Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wastewater treatment plants significant source of microplastics in rivers

25.02.2016

Millions of tiny pieces of plastic are escaping wastewater treatment plant filters and winding up in rivers where they could potentially contaminate drinking water supplies and enter the food system, according to new research being presented here.

Microplastics - small pieces of plastic less than 5 millimeters (0.20 inches) wide - are an emerging environmental concern in ocean waters, where they can harm ocean animals.


Although wastewater treatment plants are catching 90 percent or more of the incoming microplastics in wastewater, the amount of microplastics being released daily with treated wastewater into rivers is significant, ranging from 15,000 to 4.5 million microplastic particles per day per treatment plant. These microplastics can be a source of pathogenic bacteria. Pictured here is some plastic found in wastewater influent (raw sewage entering a wastewater treatment plant), near Bartlett, Illinois.

Credit: Timothy Hoellein

Although the majority of ocean debris - including plastics - is transported to oceans from rivers, much less is known about how microplastics are entering rivers and affecting river ecosystems, according to Timothy Hoellein, an assistant professor at Loyola University Chicago.

Rivers are sources of drinking water for many communities and also a habitat for wildlife, Hoellein said. Fish and invertebrates eat the tiny pieces of plastic in rivers, which then make their way up the food chain - possibly ending up on our dinner plates, he said. Like microplastics in the ocean, plastics found in rivers carry potentially harmful bacteria and other pollutants on their surfaces.

"Rivers have less water in them (than oceans), and we rely on that water much more intensely," Hoellein said.

Hoellein previously found that water downstream from a wastewater treatment plant had a higher concentration of microplastics than water upstream from the plant. Now, new research by Hoellein and his colleagues studying 10 urban rivers in Illinois supports this initial finding. Although initial estimates suggest that wastewater treatment plants are catching 90 percent or more of the incoming microplastics, the amount of microplastics being released daily with treated wastewater into rivers is significant, ranging from 15,000 to 4.5 million microplastic particles per day per treatment plant, according to the new research.

Wastewater treatment plants were a source of microplastics in 80 percent of the rivers studied, regardless of the size of the river or the size and type of wastewater treatment plant. The new research also found that in each river, the tiny plastic particles that escaped the wastewater treatment plants were home to bacterial communities that were more likely to be potentially harmful than the bacteria found in the rivers.

"[Wastewater treatment plants] do a great job of doing what they are designed to do - which is treat waste for major pathogens and remove excess chemicals like carbon and nitrogen from the water that is released back into the river," Hoellein said. "But they weren't designed to filter out these tiny particles."

Hoellein will present new findings on microplastics in rivers Thursday, February 25 at the 2016 Ocean Sciences Meeting, co-sponsored by the Association for the Sciences of Limnology and Oceanography, The Oceanography Society and the American Geophysical Union.

The new research found that not only do microplastics stay in ecosystems for a long time, but they often travel a long way from their point of origin. The researchers found microplastics as far as 2 kilometers (1.24 miles) downstream from the treatment plants, which supports the idea that that rivers can transport plastic and pathogens over long distances, Hoellein said. As the microplastics travel downstream, they are being introduced and incorporated into many ecosystems, he added.

Hoellein said scientists are working to figure out how much plastic stays in the rivers and how much ends up in the oceans. Studying microplastics in rivers could help scientists better understand the entire lifecycle of these tiny pieces of plastic - from land to the ocean, Hoellein said.

"The study of microplastics shouldn't be separated by an artificial disciplinary boundary," he said. "These aquatic ecosystems are all connected."

###

Notes for Journalists

The researchers on this study will present an oral presentation about their work on Thursday, 25 February 2016 at the Ocean Sciences Meeting. The meeting is taking place from 21 - 26 February at the Ernest N. Morial Convention Center in New Orleans. Visit the Ocean Sciences Media Center for information for members of the news media.

Below is an abstract of the presentation. The abstract is a part of HI41A: The Emerging Science of Marine Debris: From Assessment to Knowledge that Informs Solutions I being held Thursday, 25 February from 8:00 a.m. to 10:00 a.m. Central Time in room RO1.

Title: Consider a source: Microplastic in rivers is abundant, mobile, and selects for unique bacterial assemblages

Oral presentation
Session #: HI41A
Abstract #: HI41A-02
Date: 25 February 2016
Time: 8:15 a.m.
Location: RO1

Authors: Timothy Hoellein, John Kelly, Amanda McCormick, Amanda McCormick: Loyola University Chicago, Chicago, Illinois, U.S.A.

Abstract: Microplastic particles (< 5mm) in oceans are an emerging ecological concern. While rivers are considered a major source of microplastic to oceans, little is known about microplastic abundance, transport, and biological interactions in rivers. Our initial research an urban river showed microplastic collected downstream of a wastewater treatment plant (WWTP) was more abundant than upstream, more abundant than many marine sites, and had higher occurrences of bacterial taxa associated with plastic decomposition and gastrointestinal pathogens than natural habitats (e.g., seston and water column). Based on these data, we conducted follow-up projects to measure 1) the role of WWTPs on microplastic abundance in 10 rivers, 2) microplastic concentrations in WWTP influent, sludge, and effluent, and 3) deposition rates of microplastic downstream of a WWTP point source. In each project, we characterized bacterial community composition on microplastic and natural habitats using next-generation Illumina sequencing. Although maximum concentrations varied among 10 sites, microplastic concentration was significantly higher downstream of WWTPs than upstream. WWTPs retained a significant component of microplastic in two activated sludge plants (>90%). Microplastic deposition length in an urban river was >2 km, and concentrations were orders of magnitude higher in the sediment than water column. Finally, bacterial communities were distinct on microplastic in water column and sediment habitats, yet communities became more similar with increasing distance from WWTP effluent sites. These data support the role of rivers as sources of microplastic to downstream ecosystems, but also illustrate that rivers are active sites of microplastic retention and bacterial colonization. Results will inform policies and engineering advances for mitigating microplastic inputs and redistribution. We advocate for research on plastic in the environment which synthesizes data from freshwater and marine disciplines. This approach is needed to facilitate quantitative analyses of the physical and biological factors driving the 'life cycle' of plastic at a global scale.

Contact information for the researchers: Timothy Hoellein, Ph.D.: thoellein@luc.edu, +1 (724) 272 9799

Ocean Sciences Press Office Contacts:
Nanci Bompey
+1 (914) 552-5759
nbompey@agu.org

Lauren Lipuma
+1 (504) 427-6069
llipuma@agu.org

http://www.agu.org 

Lauren Lipuma | American Geophysical Union

More articles from Earth Sciences:

nachricht Research icebreaker Polarstern begins the Antarctic season
09.11.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Far fewer lakes below the East Antarctic Ice Sheet than previously believed
08.11.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>