Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warmer, wetter climate could mean stronger, more intense storms

19.12.2017

High-resolution climate simulations suggest that extreme convective systems will increase in frequency under a warmer climate scenario

How would today's weather patterns look in a warmer, wetter atmosphere - an expected shift portended by climate change?


Average composite reflectivity over the CONUS (contiguous US) domain in all 13 years of the simulations are shown by season (May-June and July-August) and by simulation type (control and psuedo global warming).

Credit: Kristen Rasmussen/NCAR

Colorado State University researcher Kristen Rasmussen offers new insight into this question - specifically, how thunderstorms would be different in a warmer world.

The assistant professor of atmospheric science works at the interface of weather and climate. She is lead author on a new paper in Climate Dynamics that details high-resolution climate simulations across the continental United States. Her results suggest that extreme thunderstorms, or what atmospheric scientists call convective systems, will increase in frequency under a warmer climate scenario. This shift would be caused by fundamental changes in thermodynamic conditions of the atmosphere.

For the study, Rasmussen employed a powerful new dataset developed by the National Center for Atmospheric Research (NCAR) in Boulder, Colorado, where Rasmussen completed postdoctoral work before joining the CSU faculty in 2016.

The scientists generated the enormous dataset by running NCAR's Weather Research and Forecasting model at an extremely high resolution of about 4 kilometers (about 2.5 miles), across the entire contiguous U.S. Typical climate models only resolve to about 100 kilometers (about 62 miles) - not nearly the detail available in the new dataset. Included in the new data are finer-scale cloud processes than have been available in previous climate models.

Using the dataset and collaborating with NCAR researchers, Rasmussen led analysis of detailed climate simulations. The first control simulation included weather patterns from 2000-2013. The second simulation overlaid that same weather data with a "pseudo global warming" technique using an accepted scenario that assumes a 2- to 3-degree increase in average temperature, and a doubling of atmospheric carbon dioxide.

"When we compared the current convective population to the future, we found that weak to moderate storms decrease in frequency, whereas the most intense storms increase in frequency," Rasmussen said. "This is an indication of a shift in the convective population, and it gives us a picture of how changes in climate may affect the occurrence of thunderstorms."

To explain this finding, the study also showed that while the amount of energy available for convection increases in a warmer and moister climate, the energy inhibiting convection also increases. The relationships of these shifts provide a thermodynamic explanation for increasing or decreasing numbers of storms.

Current climate models do not properly account for cloud processes and have made assumptions about their behavior. In fact, cloud and mesoscale, or medium-scale, processes in the atmosphere are among the biggest uncertainties in today's climate models, Rasmussen said.

"Now that global climate models are being run at higher resolution, they need more information about the physical processes of clouds, in order to better understand all the ramifications of climate change," she said. "This was one of the motivations behind the study."

In Rasmussen's study, cloud behavior was more realistically defined using data resolved in 4-kilometer blocks. That meant she could resolve topographical features like the Rocky Mountains and allow the thunderstorms to develop naturally in their environment. Her study accounted for propagation of organized storms, and also included correct daily precipitation cycles across the U.S., neither of which are accurately represented in current climate models.

NCAR plans more climate simulations that include even finer-scale detail of weather processes. Rasmussen hopes to conduct follow-up studies that account for shifts in the storm track, which was not reflected in her most recent study.

Anne Manning | EurekAlert!

More articles from Earth Sciences:

nachricht New studies increase confidence in NASA's measure of Earth's temperature
24.05.2019 | NASA/Goddard Space Flight Center

nachricht New Measurement Device: Carbon Dioxide As Geothermometer
21.05.2019 | Universität Heidelberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>