Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warmer, wetter climate could mean stronger, more intense storms

19.12.2017

High-resolution climate simulations suggest that extreme convective systems will increase in frequency under a warmer climate scenario

How would today's weather patterns look in a warmer, wetter atmosphere - an expected shift portended by climate change?


Average composite reflectivity over the CONUS (contiguous US) domain in all 13 years of the simulations are shown by season (May-June and July-August) and by simulation type (control and psuedo global warming).

Credit: Kristen Rasmussen/NCAR

Colorado State University researcher Kristen Rasmussen offers new insight into this question - specifically, how thunderstorms would be different in a warmer world.

The assistant professor of atmospheric science works at the interface of weather and climate. She is lead author on a new paper in Climate Dynamics that details high-resolution climate simulations across the continental United States. Her results suggest that extreme thunderstorms, or what atmospheric scientists call convective systems, will increase in frequency under a warmer climate scenario. This shift would be caused by fundamental changes in thermodynamic conditions of the atmosphere.

For the study, Rasmussen employed a powerful new dataset developed by the National Center for Atmospheric Research (NCAR) in Boulder, Colorado, where Rasmussen completed postdoctoral work before joining the CSU faculty in 2016.

The scientists generated the enormous dataset by running NCAR's Weather Research and Forecasting model at an extremely high resolution of about 4 kilometers (about 2.5 miles), across the entire contiguous U.S. Typical climate models only resolve to about 100 kilometers (about 62 miles) - not nearly the detail available in the new dataset. Included in the new data are finer-scale cloud processes than have been available in previous climate models.

Using the dataset and collaborating with NCAR researchers, Rasmussen led analysis of detailed climate simulations. The first control simulation included weather patterns from 2000-2013. The second simulation overlaid that same weather data with a "pseudo global warming" technique using an accepted scenario that assumes a 2- to 3-degree increase in average temperature, and a doubling of atmospheric carbon dioxide.

"When we compared the current convective population to the future, we found that weak to moderate storms decrease in frequency, whereas the most intense storms increase in frequency," Rasmussen said. "This is an indication of a shift in the convective population, and it gives us a picture of how changes in climate may affect the occurrence of thunderstorms."

To explain this finding, the study also showed that while the amount of energy available for convection increases in a warmer and moister climate, the energy inhibiting convection also increases. The relationships of these shifts provide a thermodynamic explanation for increasing or decreasing numbers of storms.

Current climate models do not properly account for cloud processes and have made assumptions about their behavior. In fact, cloud and mesoscale, or medium-scale, processes in the atmosphere are among the biggest uncertainties in today's climate models, Rasmussen said.

"Now that global climate models are being run at higher resolution, they need more information about the physical processes of clouds, in order to better understand all the ramifications of climate change," she said. "This was one of the motivations behind the study."

In Rasmussen's study, cloud behavior was more realistically defined using data resolved in 4-kilometer blocks. That meant she could resolve topographical features like the Rocky Mountains and allow the thunderstorms to develop naturally in their environment. Her study accounted for propagation of organized storms, and also included correct daily precipitation cycles across the U.S., neither of which are accurately represented in current climate models.

NCAR plans more climate simulations that include even finer-scale detail of weather processes. Rasmussen hopes to conduct follow-up studies that account for shifts in the storm track, which was not reflected in her most recent study.

Anne Manning | EurekAlert!

More articles from Earth Sciences:

nachricht Volcanoes and glaciers combine as powerful methane producers
20.11.2018 | Lancaster University

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>