Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Volcanoes and glaciers combine as powerful methane producers

20.11.2018

Large amounts of the potent greenhouse gas methane are being released from an Icelandic glacier, scientists have discovered.

A study of Sólheimajökull glacier, which flows from the active, ice-covered volcano Katla, shows that up to 41 tonnes of methane is being released through meltwaters every day during the summer months. This is roughly equivalent to the methane produced by more than 136,000 belching cows.


Dr Peter Wynn, Lancaster University, taking a sample in Iceland

Credit: Dr Hugh Tuffen

The Lancaster university-led research, which is featured in Scientific Reports, is the first published field study to show methane release from glaciers on this scale.

"This is a huge amount of methane lost from the glacial meltwater stream into the atmosphere," said Dr Peter Wynn, a glacial biogeochemist from the Lancaster Environment Centre and corresponding author of the study.

"It greatly exceeds average methane loss from non-glacial rivers to the atmosphere reported in the scientific literature. It rivals some of the world's most methane-producing wetlands; and represents more than twenty times the known methane emissions of all Europe's other volcanoes put together."

Dr Wynn added: "Methane has a global warming potential 28 times that of carbon dioxide (CO2). It is therefore important that we know about different sources of methane being released to the atmosphere and how they might change in the future.

"There has been a lot of speculation about whether or not glaciers can release methane. The beds of glaciers contain the perfect cocktail of conditions for methane production - microbes, low oxygen, organic matter and water - along with an impermeable cap of ice on the surface trapping the methane beneath.

"However, nobody has thoroughly investigated this in the field before and this is the strongest evidence yet that glaciers are releasing methane."

The study comes out of PhD research carried out by Dr Rebecca Burns when she was a graduate researcher at Lancaster University through the Centre for Global Eco-innovation, part-funded by the European Regional Development Fund.

Dr Burns took water samples from the edge of the melt water lake in front of the Sólheimajökull glacier and measured the methane concentrations, comparing them with methane levels in nearby sediments and other rivers, to make sure that the methane wasn't being released from the surrounding landscape.

"The highest concentrations were found at the point where the river emerges from underneath the glacier and enters the lake. This demonstrates the methane must be sourced from beneath the glacier," Dr Wynn explains.

Using a mass spectrometer, which identifies the unique 'fingerprint' of the methane, the researchers discovered the methane is coming from microbiological activity at the bed of the glacier. But there is still a connection with the volcano.

"We believe that while the volcano is not producing the methane, it is providing the conditions that allow the microbes to thrive and release methane into the surrounding meltwaters," Said Dr Wynn.

Normally when methane comes into contact with oxygen it combines to form CO2, so the methane effectively disappears. On a glacier, meltwaters rich in dissolved oxygen access the bed of the ice mass and convert any methane present into carbon dioxide.

"Understanding the seasonal evolution of Sólheimajökull's subglacial drainage system and how it interacts with the Katla geothermal area formed part of this work", said Professor Fiona Tweed, an expert in glacier hydrology at Staffordshire University and co-author of the study.

At Sólheimajökull when the meltwater reaches the glacier bed, it comes into contact with gases produced by the Katla volcano. These gases lower the oxygen content of the water, meaning some of the methane produced by the microbes can be dissolved into the water and transported out of the glacier without being converted to CO2.

Dr Hugh Tuffen, a volcanologist at Lancaster University and co-author on the study, said: "The heat from Katla volcano may greatly accelerate the generation of microbial methane, so in fact you could see Katla as a giant microbial incubator.

"Scientists have also recently discovered that Katla emits vast amounts of CO2 - it's in the top five globally in terms of CO2 emissions from volcanoes - so Katla is certainly a very interesting, very gassy volcano."

"Both Iceland and Antarctica have many ice-covered, active volcanoes and geothermal systems," said Dr Burns. "The recent International Panel on Climate Change (IPCC) report highlights that current trajectories indicate global warming is likely to reach 1.5oC between 2030 and 2052, with greatest perceived climate sensitivity at higher latitudes. If methane produced under these ice caps has a means of escaping as the ice thins, there is the chance we may see short term increases in the release of methane from ice masses into the future."

Andri Stefánsson, Professor of Hydrothermal Geochemistry at the University of Iceland, who was not involved in the study said: "These findings provide important and new information on the origin and fluxes of methane at the Earth's surface and the significance of this greenhouse gas to the atmosphere from such systems.

However, the researchers caution that it is still unclear how these effects will play out. They believe that although there could be a short-term spike of methane released while the glacier melts and thins, in the long-term the process could be self-limiting as, along with other reasons, without the ice the conditions for methane production are removed.

###

This research involved collaborative business partner Elementar UK Ltd. The analysis was undertaken in collaboration with the Centre for Ecology & Hydrology (CEH). Methane isotope analysis was undertaken in the life sciences mass spectrometer facility (CEH) via NERC facility funding.

The other authors of the paper, 'Direct isotopic evidence of biogenic methane production and efflux from beneath a temperate glacier', are: Dr Rebecca Burns, Professor Phil Barker, Dr Hugh Tuffen, Dr Zheng Zhou, Miss M Stuart and Professor Nick Ostle, all from Lancaster University Dr Andy Stott, Dr Niall McNamara and Mr Simon Oakley from the Centre for Ecology & Hydrology. Prof Fiona Tweed at Staffordshire University. And Mr Aaron Chesler at the University of Maine, USA.

Dr Hugh Tuffen is supported by the Royal Society.

Media Contact

Ian Boydon
iboydon@lancaster.ac.uk
01-524-592-645

http://www.lancs.ac.uk 

Ian Boydon | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41598-018-35253-2

More articles from Earth Sciences:

nachricht Live from the ocean research vessel Atlantis
13.12.2018 | National Science Foundation

nachricht NSF-supported scientists present new research results on Earth's critical zone
13.12.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>