Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Volcanic Ash Research Shows How Plumes End up in the Jet Stream

20.04.2010
New techniques under development could provide better tracking of volcanic plumes

A University at Buffalo volcanologist, an expert in volcanic ash cloud transport, published a paper recently showing how the jet stream – the area in the atmosphere that pilots prefer to fly in – also seems to be the area most likely to be impacted by plumes from volcanic ash.

"That's a problem," says Marcus I. Bursik, PhD, one of the foremost experts on volcanic plumes and their effect on aviation safety, "because modern transcontinental and transoceanic air routes are configured to take advantage of the jet stream's power, saving both time and fuel.

"The interaction of the jet stream and the plume is likely a factor here," says Bursik, professor of geology in the UB College of Arts and Sciences. "Basically, planes have to fly around the plume or just stop flying, as they have, as the result of this eruption in Iceland."

In some cases, if the plume can be tracked well enough with satellites, pilots can steer around the plume, he notes, but that didn't work in this case because the ash drifted right over Britain.

Bursik participated in the first meetings in the early 1990s between volcanologists and the aviation industry to develop methods to ensure safe air travel in the event of volcanic eruptions. He and colleagues authored a 2009 paper called "Volcanic plumes and wind: Jet stream interaction examples and implications for air traffic" in the Journal of Volcanology and Geothermal Research.

"In the research we did, we found that the jet stream essentially stops the plume from rising higher into the atmosphere," he says. "Because the jet stream causes the density of the plume to drop so fast, the plume's ability to rise above the jet stream is halted: the jet stream caps the plume at a certain atmospheric level."

Bursik says that new techniques now in development will be capable of producing better estimates of where and when ash clouds from volcanoes will travel.

He and his colleagues have proposed a project with researchers at the University of Alaska that would improve tracking estimates to find out where volcanic ash clouds are going.

"What we get now is a mean estimate of where ash should be in atmosphere," says Bursik, "but our proposal is designed to develop both the mean estimate and estimates of error that would be more accurate and useful. It could help develop scenarios that would provide a quantitative probability as to how likely a plane is to fly through the plume, depending on the route."

Bursik also is working with other researchers at UB, led by UB geology professor Greg Valentine, on a project called VHub, a 'cyber infrastructure for collaborative volcano research and mitigation.'

VHUB would speed the transfer of new tools developed by volcanologists to the government agencies charged with protecting the public from the hazards of volcanic eruptions. That international project, which Valentine heads up at UB, with researchers at Michigan Technological University and the University of South Florida, was funded recently by the National Science Foundation.

Bursik's co-authors on the jet stream paper are Shannon E. Kobs and Aaron Burns, both former UB graduate students in geology, L.I. Bazanova and I.V. Melekestves, of the Russian Academy of Sciences, A. Kurbatov of the University of Maine, Orono, and D.C. Pieri of the Jet Propulsion Laboratory at California Institute of Technology.

The research was funded by NSF, the National Aeronautics and Space Administration and California Institute of Technology and Science Applications International Corp.

Bursik and Valentine are members of the UB Center for GeoHazards Studies at http://www.geohazards.buffalo.edu, which is supporting the UB2020 goals in Extreme Events.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>