Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Volcanic Ash Research Shows How Plumes End up in the Jet Stream

20.04.2010
New techniques under development could provide better tracking of volcanic plumes

A University at Buffalo volcanologist, an expert in volcanic ash cloud transport, published a paper recently showing how the jet stream – the area in the atmosphere that pilots prefer to fly in – also seems to be the area most likely to be impacted by plumes from volcanic ash.

"That's a problem," says Marcus I. Bursik, PhD, one of the foremost experts on volcanic plumes and their effect on aviation safety, "because modern transcontinental and transoceanic air routes are configured to take advantage of the jet stream's power, saving both time and fuel.

"The interaction of the jet stream and the plume is likely a factor here," says Bursik, professor of geology in the UB College of Arts and Sciences. "Basically, planes have to fly around the plume or just stop flying, as they have, as the result of this eruption in Iceland."

In some cases, if the plume can be tracked well enough with satellites, pilots can steer around the plume, he notes, but that didn't work in this case because the ash drifted right over Britain.

Bursik participated in the first meetings in the early 1990s between volcanologists and the aviation industry to develop methods to ensure safe air travel in the event of volcanic eruptions. He and colleagues authored a 2009 paper called "Volcanic plumes and wind: Jet stream interaction examples and implications for air traffic" in the Journal of Volcanology and Geothermal Research.

"In the research we did, we found that the jet stream essentially stops the plume from rising higher into the atmosphere," he says. "Because the jet stream causes the density of the plume to drop so fast, the plume's ability to rise above the jet stream is halted: the jet stream caps the plume at a certain atmospheric level."

Bursik says that new techniques now in development will be capable of producing better estimates of where and when ash clouds from volcanoes will travel.

He and his colleagues have proposed a project with researchers at the University of Alaska that would improve tracking estimates to find out where volcanic ash clouds are going.

"What we get now is a mean estimate of where ash should be in atmosphere," says Bursik, "but our proposal is designed to develop both the mean estimate and estimates of error that would be more accurate and useful. It could help develop scenarios that would provide a quantitative probability as to how likely a plane is to fly through the plume, depending on the route."

Bursik also is working with other researchers at UB, led by UB geology professor Greg Valentine, on a project called VHub, a 'cyber infrastructure for collaborative volcano research and mitigation.'

VHUB would speed the transfer of new tools developed by volcanologists to the government agencies charged with protecting the public from the hazards of volcanic eruptions. That international project, which Valentine heads up at UB, with researchers at Michigan Technological University and the University of South Florida, was funded recently by the National Science Foundation.

Bursik's co-authors on the jet stream paper are Shannon E. Kobs and Aaron Burns, both former UB graduate students in geology, L.I. Bazanova and I.V. Melekestves, of the Russian Academy of Sciences, A. Kurbatov of the University of Maine, Orono, and D.C. Pieri of the Jet Propulsion Laboratory at California Institute of Technology.

The research was funded by NSF, the National Aeronautics and Space Administration and California Institute of Technology and Science Applications International Corp.

Bursik and Valentine are members of the UB Center for GeoHazards Studies at http://www.geohazards.buffalo.edu, which is supporting the UB2020 goals in Extreme Events.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Earth Sciences:

nachricht Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle
22.06.2018 | Technical University of Denmark

nachricht Polar ice may be softer than we thought
22.06.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>