Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Volcanic ash impact on air travel could be reduced says new research

25.10.2018

Manchester-based Volcanologists have developed a method and camera that could help reduce the dangers, health risks and travel impacts of ash plumes during a volcanic eruption.

Ash is sometimes seen as a secondary danger in volcanoes when compared to more visual hazards, such as lava and pyroclastic flows. However, ash can have a major impact on human lives and infrastructure, such as the 2010 eruption of the Icelandic volcano, Eyjafjallajökull, which brought international aviation across Europe to a standstill.


In January 2018 the team visited Santiaguito Dome Complex, located in the old eruption scar of Santa Maria volcano in Guatemala and measured a series of explosions.

Credit: Benjamin Esse, The University of Manchester

This research, which is being published in Scientific Reports, uses a new kind camera, developed at The University of Manchester, to measure the flow and speed of ash falling out of a volcanic plume.

The researchers measure how ash particles interact with sunlight and, specifically, how they change the polarisation of sunlight, in a similar way to how polarised sunglasses work. This wouldn't have been possible without the development of the new "AshCam" which is the first camera of its kind in the world.

During a volcanic eruption heavy ash fall can lead to building collapse, potentially injuring or killing those inside. Plus exposure to ash can cause irritation to the nose, throat and eyes, as well as aggravating pre-existing health conditions such as asthma.

But ash is also a major danger to other critical human infrastructure, including electrical, water and transportation networks, especially air travel - such as the 2010 Icelandic eruption.

Chair in Volcanology at The University of Manchester, Professor Mike Burton, said: "Volcanic ash is a primary product of an explosive volcanic eruption which generally poses a threat to human health and infrastructure.

"The Icelandic eruption in 2010 highlighted to the whole world that ash-rich volcanic eruptions can have a major impact on the global economy through air space closures designed to minimise the risk of jet engine failure due to ash clogging."

The team visited Santiaguito Lava Dome, part of Santa Maria volcano in Guatemala, and measured a series of explosions with the camera. Santiaguito produces a number of these explosions every day, approximately one every two hours, making it the ideal place to test out new equipment, techniques and research models.

Professor Burton added: "Models of ash dispersion are key to forecasting the concentrations of ash during an eruption, which ultimately determine which air space is closed. Our research helps to measure the dynamics of ash fallout during an eruption. This gives us new insights into volcanic ash dynamics, providing an important step towards improved models of ash dispersion."

Previous studies have used ground-based UV cameras for the observation of volcanic ash or measured black carbon particles in ship emissions. However, these methods were unable to distinguish ash from other particles in the plume, making it difficult to measure the flow of the ash.

This is where "AshCam" is different. It is made up of commercial cameras already available on the market that have been adapted with special filters that can identify ash more easily using sunlight.

PhD Researcher, Benjamin Esse, from Manchester's School of Earth and Environmental Sciences, explains: "AshCam is small, lightweight and relatively cheap, making it ideal for use in volcanic environments where larger, more expensive equipment is unable to be deployed.

"This is an exciting development as it offers volcanologists a tool that allows them to easily measure the dynamics of ash plumes using only sunlight. The results from these measurements can be used to inform ash dispersal models, potentially improving their accuracy and effectiveness in mitigating the risks posed by ash plumes."

###

Notes to Editor

For media enquiries please contact Jordan Kenny on 0161 275 8257 or jordan.kenny@manchester.ac.uk

Reference "Quantification of ash sedimentation dynamics through depolarisation imaging with AshCam" Scientific Reports - DOI is 10.1038/s41598-018-34110-6. Ben Esse, Michael Burton, Matthew Varnam, Ryunosuke Kazahaya, Paul A. Wallace, Felix Von-Aulock, Yan Lavallée, Giuseppe Salerno, Simona Scollo, Hugh Coe

About The University of Manchester

The University of Manchester, a member of the prestigious Russell Group, is one of the UK's largest single-site universities with more than 40,000 students - including more than 10,000 from overseas.

It is consistently ranked among the world's elite for graduate employability.

The University is also one of the country's major research institutions, rated fifth in the UK in terms of 'research power' (REF 2014). World-class research is carried out across a diverse range of fields including cancer, advanced materials, global inequalities, energy and industrial biotechnology.

No fewer than 25 Nobel laureates have either worked or studied here.

It is the only UK university to have social responsibility among its core strategic objectives, with staff and students alike dedicated to making a positive difference in communities around the world.

Manchester is ranked 29th in the world in the QS World University Rankings 2018 and 6th in the UK.

Visit http://www.manchester.ac.uk for further information.

Facts and figures:

http://www.manchester.ac.uk/discover/facts-figures/

Research Beacons:

http://www.manchester.ac.uk/research/beacons/

News and media contacts: http://www.manchester.ac.uk/discover/news/

Media Contact

Jordan Kenny
jordan.kenny@manchester.ac.uk
44-161-275-8257

 @UoMNews

http://www.manchester.ac.uk 

Jordan Kenny | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41598-018-34110-6

Further reports about: Environmental Sciences black carbon sunlight volcanic volcanic ash

More articles from Earth Sciences:

nachricht Geochemists measure new composition of Earth’s mantle
17.09.2019 | Westfälische Wilhelms-Universität Münster

nachricht Low sea-ice cover in the Arctic
13.09.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

Quality control in immune communication: Chaperones detect immature signaling molecules in the immune system

20.09.2019 | Life Sciences

Moderately Common Plants Show Highest Relative Losses

20.09.2019 | Life Sciences

The Fluid Fingerprint of Hurricanes

20.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>