Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vicious circle of drought and forest loss in the Amazon

13.03.2017

Logging that happens today and potential future rainfall reductions in the Amazon could push the region into a vicious dieback circle. If dry seasons intensify with human-caused climate change, the risk for self-amplified forest loss would increase even more, an international team of scientists finds. If however there is a great variety of tree species in a forest patch, according to the study this can significantly strengthen the chance of survival. To detect such non-linear behavior, the researchers apply a novel complex network analysis of water fluxes.

“The Amazon rainforest is one of the tipping elements in the Earth system,” says lead-author Delphine Clara Zemp who conducted the study at the Potsdam Institute for Climate Impact Research, Germany.


Photo: Thinkstock

Source: Potsdam Institute for Climate Impact Research

“We already know that on the one hand, reduced rainfall increases the risk of forest dieback, and on the other hand, forest loss can intensify regional droughts. So more droughts can lead to less forest leading to more droughts and so on. Yet the consequences of this feedback between the plants on the ground and the atmosphere above them so far was not clear. Our study provides new insight into this issue, highlighting the risk of self-amplifying forest loss which comes on top of the forest loss directly caused by the rainfall reduction.”

This study results from the German-Brazilian Research Training Group on Dynamical Phenomena in Complex Networks at (IRTG1740) hosted by Humboldt Universität zu Berlin.

Self-amplifying effect comes on top of the forest loss directly caused by reduced rainfall

Under a dry-season halving of rainfall, at least 10 percent of the forest might be lost due to effects of self-amplification alone, adding to the substantial direct forest losses from reduced water availability. Computer simulations built by the scientists suggest that this has already happened in the Amazon about 20,000 years ago, in accordance with evidence from the Earth’s past.

Still, they stress that the uncertainties are considerable. Taking into account the puzzlements of the vegetation-atmosphere-feedback, self-amplified forest dieback could amount up to 38 percent of the Amazon basin. In combination with the direct effects of the droughts, in fact most of the Amazon forest might eventually be at risk.

The study cannot provide information about the time scales of the processes, it is rather a sensitivity analysis.

Strikingly, the huge tropical woods produce much of the water they need themselves by evaporating moisture which then rains back onto them. “The Amazon water cycle is of course pure physics and biology, but it is also one of nature’s great wonders,” says co-author Henrique M.J. Barbosa from the Universidade de São Paulo, Brazil.

“As powerful as the cycle is, it is also surprisingly susceptible to environmental changes – and humankind is imposing massive perturbations on Amazonia by both cutting down the trees and heating up the air with greenhouse gases, which reduces large-scale moisture transport and precipitation, and end up affecting even the untouched patches of the forests.”

Even if average rainfall is stable, extended dry periods increase the risk of tipping

“Today, the wet season is getting wetter and the dry season drier in Southern and Eastern Amazonia due to changing sea-surface temperatures that influence moisture transport across the tropics,” says Anja Rammig from Technische Universität München (TUM) and PIK. “It is unclear whether this will continue, but recent projections constrained with observations indicate that widespread drying during the dry season is possible in the region.”

Even if average rainfall might not drastically change, extended drought events might tip parts of the Amazon forest into self-amplifying forest loss, eventually turning them into a savanna. “Projected rainfall changes for the end of the 21st century will not lead to complete Amazon dieback,” says co-author Carl Schleussner from Berlin-based scientific think tank Climate Analytics and PIK. “But our findings suggest that large parts of it are certainly at risk.”

Interestingly, the more diverse the Amazon vegetation is, the less vulnerable it seems to be. Diversity has the potential to decrease the effects of self-amplified forest loss. “Since every species has a different way of reacting to stress, having a great variety of them can be a means for ecosystem resilience,” says Marina Hirota from the Federal University of Santa Catarina, Brazil. “Preserving biodiversity may hence not just be about loving trees and weeds and birds and bugs; it may also be a tool to stabilize key elements of the Earth system.”

Article: Delphine Clara Zemp, Carl-Friedrich Schleussner, Henrique M. J. Barbosa, Marina Hirota, Vincent Montade, Gilvan Sampaio, Arie Staal, Lan Wang-Erlandsson, Anja Rammig (2017): Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nature Communications [DOI:10.1038/NCOMMS14681]

Link to the article once it is published: http://dx.doi.org/10.1038/NCOMMS14681

STRICTLY EMBARGOED UNTIL Monday, 13 March 2017 at 10.00am London Time / 06.00am US Eastern Time

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

www.pik-potsdam.de 

Weitere Informationen:

http://dx.doi.org/10.1038/NCOMMS14681 Link to the article once it is published

Jonas Viering | Potsdam-Institut für Klimafolgenforschung
Further information:
http://www.pik-potsdam.de

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>