Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vicious circle of drought and forest loss in the Amazon

13.03.2017

Logging that happens today and potential future rainfall reductions in the Amazon could push the region into a vicious dieback circle. If dry seasons intensify with human-caused climate change, the risk for self-amplified forest loss would increase even more, an international team of scientists finds. If however there is a great variety of tree species in a forest patch, according to the study this can significantly strengthen the chance of survival. To detect such non-linear behavior, the researchers apply a novel complex network analysis of water fluxes.

“The Amazon rainforest is one of the tipping elements in the Earth system,” says lead-author Delphine Clara Zemp who conducted the study at the Potsdam Institute for Climate Impact Research, Germany.


Photo: Thinkstock

Source: Potsdam Institute for Climate Impact Research

“We already know that on the one hand, reduced rainfall increases the risk of forest dieback, and on the other hand, forest loss can intensify regional droughts. So more droughts can lead to less forest leading to more droughts and so on. Yet the consequences of this feedback between the plants on the ground and the atmosphere above them so far was not clear. Our study provides new insight into this issue, highlighting the risk of self-amplifying forest loss which comes on top of the forest loss directly caused by the rainfall reduction.”

This study results from the German-Brazilian Research Training Group on Dynamical Phenomena in Complex Networks at (IRTG1740) hosted by Humboldt Universität zu Berlin.

Self-amplifying effect comes on top of the forest loss directly caused by reduced rainfall

Under a dry-season halving of rainfall, at least 10 percent of the forest might be lost due to effects of self-amplification alone, adding to the substantial direct forest losses from reduced water availability. Computer simulations built by the scientists suggest that this has already happened in the Amazon about 20,000 years ago, in accordance with evidence from the Earth’s past.

Still, they stress that the uncertainties are considerable. Taking into account the puzzlements of the vegetation-atmosphere-feedback, self-amplified forest dieback could amount up to 38 percent of the Amazon basin. In combination with the direct effects of the droughts, in fact most of the Amazon forest might eventually be at risk.

The study cannot provide information about the time scales of the processes, it is rather a sensitivity analysis.

Strikingly, the huge tropical woods produce much of the water they need themselves by evaporating moisture which then rains back onto them. “The Amazon water cycle is of course pure physics and biology, but it is also one of nature’s great wonders,” says co-author Henrique M.J. Barbosa from the Universidade de São Paulo, Brazil.

“As powerful as the cycle is, it is also surprisingly susceptible to environmental changes – and humankind is imposing massive perturbations on Amazonia by both cutting down the trees and heating up the air with greenhouse gases, which reduces large-scale moisture transport and precipitation, and end up affecting even the untouched patches of the forests.”

Even if average rainfall is stable, extended dry periods increase the risk of tipping

“Today, the wet season is getting wetter and the dry season drier in Southern and Eastern Amazonia due to changing sea-surface temperatures that influence moisture transport across the tropics,” says Anja Rammig from Technische Universität München (TUM) and PIK. “It is unclear whether this will continue, but recent projections constrained with observations indicate that widespread drying during the dry season is possible in the region.”

Even if average rainfall might not drastically change, extended drought events might tip parts of the Amazon forest into self-amplifying forest loss, eventually turning them into a savanna. “Projected rainfall changes for the end of the 21st century will not lead to complete Amazon dieback,” says co-author Carl Schleussner from Berlin-based scientific think tank Climate Analytics and PIK. “But our findings suggest that large parts of it are certainly at risk.”

Interestingly, the more diverse the Amazon vegetation is, the less vulnerable it seems to be. Diversity has the potential to decrease the effects of self-amplified forest loss. “Since every species has a different way of reacting to stress, having a great variety of them can be a means for ecosystem resilience,” says Marina Hirota from the Federal University of Santa Catarina, Brazil. “Preserving biodiversity may hence not just be about loving trees and weeds and birds and bugs; it may also be a tool to stabilize key elements of the Earth system.”

Article: Delphine Clara Zemp, Carl-Friedrich Schleussner, Henrique M. J. Barbosa, Marina Hirota, Vincent Montade, Gilvan Sampaio, Arie Staal, Lan Wang-Erlandsson, Anja Rammig (2017): Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nature Communications [DOI:10.1038/NCOMMS14681]

Link to the article once it is published: http://dx.doi.org/10.1038/NCOMMS14681

STRICTLY EMBARGOED UNTIL Monday, 13 March 2017 at 10.00am London Time / 06.00am US Eastern Time

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

www.pik-potsdam.de 

Weitere Informationen:

http://dx.doi.org/10.1038/NCOMMS14681 Link to the article once it is published

Jonas Viering | Potsdam-Institut für Klimafolgenforschung
Further information:
http://www.pik-potsdam.de

More articles from Earth Sciences:

nachricht Volcanoes and glaciers combine as powerful methane producers
20.11.2018 | Lancaster University

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

New China and US studies back use of pulse oximeters for assessing blood pressure

21.11.2018 | Medical Engineering

Exoplanet stepping stones

21.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>