Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vicious circle of drought and forest loss in the Amazon

13.03.2017

Logging that happens today and potential future rainfall reductions in the Amazon could push the region into a vicious dieback circle. If dry seasons intensify with human-caused climate change, the risk for self-amplified forest loss would increase even more, an international team of scientists finds. If however there is a great variety of tree species in a forest patch, according to the study this can significantly strengthen the chance of survival. To detect such non-linear behavior, the researchers apply a novel complex network analysis of water fluxes.

“The Amazon rainforest is one of the tipping elements in the Earth system,” says lead-author Delphine Clara Zemp who conducted the study at the Potsdam Institute for Climate Impact Research, Germany.


Photo: Thinkstock

Source: Potsdam Institute for Climate Impact Research

“We already know that on the one hand, reduced rainfall increases the risk of forest dieback, and on the other hand, forest loss can intensify regional droughts. So more droughts can lead to less forest leading to more droughts and so on. Yet the consequences of this feedback between the plants on the ground and the atmosphere above them so far was not clear. Our study provides new insight into this issue, highlighting the risk of self-amplifying forest loss which comes on top of the forest loss directly caused by the rainfall reduction.”

This study results from the German-Brazilian Research Training Group on Dynamical Phenomena in Complex Networks at (IRTG1740) hosted by Humboldt Universität zu Berlin.

Self-amplifying effect comes on top of the forest loss directly caused by reduced rainfall

Under a dry-season halving of rainfall, at least 10 percent of the forest might be lost due to effects of self-amplification alone, adding to the substantial direct forest losses from reduced water availability. Computer simulations built by the scientists suggest that this has already happened in the Amazon about 20,000 years ago, in accordance with evidence from the Earth’s past.

Still, they stress that the uncertainties are considerable. Taking into account the puzzlements of the vegetation-atmosphere-feedback, self-amplified forest dieback could amount up to 38 percent of the Amazon basin. In combination with the direct effects of the droughts, in fact most of the Amazon forest might eventually be at risk.

The study cannot provide information about the time scales of the processes, it is rather a sensitivity analysis.

Strikingly, the huge tropical woods produce much of the water they need themselves by evaporating moisture which then rains back onto them. “The Amazon water cycle is of course pure physics and biology, but it is also one of nature’s great wonders,” says co-author Henrique M.J. Barbosa from the Universidade de São Paulo, Brazil.

“As powerful as the cycle is, it is also surprisingly susceptible to environmental changes – and humankind is imposing massive perturbations on Amazonia by both cutting down the trees and heating up the air with greenhouse gases, which reduces large-scale moisture transport and precipitation, and end up affecting even the untouched patches of the forests.”

Even if average rainfall is stable, extended dry periods increase the risk of tipping

“Today, the wet season is getting wetter and the dry season drier in Southern and Eastern Amazonia due to changing sea-surface temperatures that influence moisture transport across the tropics,” says Anja Rammig from Technische Universität München (TUM) and PIK. “It is unclear whether this will continue, but recent projections constrained with observations indicate that widespread drying during the dry season is possible in the region.”

Even if average rainfall might not drastically change, extended drought events might tip parts of the Amazon forest into self-amplifying forest loss, eventually turning them into a savanna. “Projected rainfall changes for the end of the 21st century will not lead to complete Amazon dieback,” says co-author Carl Schleussner from Berlin-based scientific think tank Climate Analytics and PIK. “But our findings suggest that large parts of it are certainly at risk.”

Interestingly, the more diverse the Amazon vegetation is, the less vulnerable it seems to be. Diversity has the potential to decrease the effects of self-amplified forest loss. “Since every species has a different way of reacting to stress, having a great variety of them can be a means for ecosystem resilience,” says Marina Hirota from the Federal University of Santa Catarina, Brazil. “Preserving biodiversity may hence not just be about loving trees and weeds and birds and bugs; it may also be a tool to stabilize key elements of the Earth system.”

Article: Delphine Clara Zemp, Carl-Friedrich Schleussner, Henrique M. J. Barbosa, Marina Hirota, Vincent Montade, Gilvan Sampaio, Arie Staal, Lan Wang-Erlandsson, Anja Rammig (2017): Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nature Communications [DOI:10.1038/NCOMMS14681]

Link to the article once it is published: http://dx.doi.org/10.1038/NCOMMS14681

STRICTLY EMBARGOED UNTIL Monday, 13 March 2017 at 10.00am London Time / 06.00am US Eastern Time

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

www.pik-potsdam.de 

Weitere Informationen:

http://dx.doi.org/10.1038/NCOMMS14681 Link to the article once it is published

Jonas Viering | Potsdam-Institut für Klimafolgenforschung
Further information:
http://www.pik-potsdam.de

More articles from Earth Sciences:

nachricht Atmospheric scientists reveal the effect of sea-ice loss on Arctic warming
11.03.2019 | Institute of Atmospheric Physics, Chinese Academy of Sciences

nachricht Sensing shakes
11.03.2019 | University of Tokyo

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>