Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USF geoscientists discover mechanisms controlling Greenland ice sheet collapse

22.07.2019

Greenland's more than 860,000 square miles are largely covered with ice and glaciers, and its melting fuels as much as one-third of the sea level rise in Florida. That's why a team of University of South Florida geoscientists' new discovery of one of the mechanisms that allows Greenland's glaciers to collapse into the sea has special significance for the Sunshine State.

In research published in Nature Communications, a group of scientists led by USF Distinguished University Professor Tim Dixon, PhD, uncovered a process that can control the "calving" of glaciers - when large chunks of glacier ice collapse into the sea, forming icebergs like the one that sank the Titanic.


Dr. Tim Dixon poses while on a research trip in Greenland.

Credit: Tim Dixon, University of South Florida

The discovery by the team that included USF PhD student Surui Xie; David Holland, PhD, and Irena Vaková, PhD, at New York University (NYU) and NYU-Abu Dhabi Research Institute; and Denis Voytenko, PhD, formerly at NYU and now at Nielson Communications, will help the scientific community better model future Greenland ice loss and sea level rise.

Glacier calving is one of the more dramatic aspects of climate change. Depending on the height of the glacier, calving can be akin to an ice structure the size of a tall skyscraper falling into the sea. Dixon's team caught one such calving on video.

"Iceberg calving has been challenging to model," Dixon said. "One of the big unknowns in future sea level rise is how fast Greenland falls apart, and iceberg calving is one of the least understood mechanisms."

The team ventured to Greenland in the summer of 2016 to install a new radar system to better understand the process. In particular, they wanted to monitor formations known as pro-glacial "mélange" (from the French word for mixture), a combination of sea ice and icebergs in front of the glacier. The mélange can be tightly packed in the long, narrow fjords that front many of Greenland's glaciers that meet the sea.

Scientists have long known that mélange can impede glaciers as they move toward the sea, but they haven't had the data to fully understand the phenomenon.

Dixon's team developed a new radar-based approach to precisely measure elevations of the mélange in front of Jakobshavn Glacier , a major outlet glacier on Greenland's west side. Using analytical techniques developed by Xie, the scientists measured the height of the mélange. The scientists found a thick mélange wedge pressed up against the glacier in late spring and early summer.

During this period, no icebergs calved, the scientists observed. Once the wedge thinned and melted by mid-summer, calving began in earnest.

"On the surface, this mélange is a subtle thing - it appears almost flat- but underwater, there are huge variations," Dixon said. "It's really the underwater part that is pinning the glacier back and preventing it from calving. By precisely measuring the surface elevations, we were able to get a handle on the much bigger sub-surface variations, which define mélange thickness."

Earlier this spring, NASA scientists reported Jakobshavn Glacier, which has been Greenland's fastest -thinning glacier for the last 20 years, was slowing in its movement toward the ocean in what appears to be a cyclical pattern of warming and cooling. But because Jakobshavn is still giving up more ice than it accumulates each year, its sheer size makes it an important factor in sea level rise, the NASA scientists maintain.

"Our study helps understand the calving process," Dixon said. "We are the first to discover that mélange isn't just some random pile of icebergs in front of the glacier. A mélange wedge can occasionally 'hold the door' and keep the glacier from calving."

Tina Meketa | EurekAlert!

More articles from Earth Sciences:

nachricht Solving the mystery of carbon on ocean floor
06.12.2019 | University of Delaware

nachricht Great Barrier Reef study shows how reef copes with rapid sea-level rise
05.12.2019 | University of Sydney

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>