Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unusual greenhouse gases may have raised ancient Martian temperature

25.11.2013
Much like the Grand Canyon, Nanedi Valles snakes across the Martian surface suggesting that liquid water once crossed the landscape, according to a team of researchers who believe that molecular hydrogen made it warm enough for water to flow.

The presence of molecular hydrogen, in addition to carbon dioxide and water, could have created a greenhouse effect on Mars 3.8 billion years ago that pushed temperatures high enough to allow for liquid water, the researchers state in the current issue of Nature Geoscience.


This is a split panel comparing a section of Arizona's Grand Canyon on left against a section of Mars' Nanedi Valles on right. Nanedi Valles is located in the Lunae Palus quadrangle of Mars. The northern part of the Nanedi Valles image shows a river once cut through it, similar to the one flowing through the Grand Canyon. Although this section of Nanedi Valles is nearly 2.5 km in width, other portions are at least twice as wide. Slight morphologic differences between the two canyons are attributable to the great age differences between the regions and the correspondingly higher degree of erosion on Mars.

Credit: Penn State

The team includes Ramses M. Ramirez, a doctoral student working with James Kasting, Evan Pugh Professor of Geosciences, Penn State.

Previous efforts to produce temperatures warm enough to allow for liquid water used climate models that include only carbon dioxide and water and were unsuccessful. The researchers used a model to show that an atmosphere with sufficient carbon dioxide, water and hydrogen could have made the surface temperatures of Mars warm to above freezing.

Those above-freezing temperatures would allow liquid water to flow across the Martian surface over 3.8 billion years ago and form the ancient valley networks, such as Nanedi Valles, much the way sections of the Grand Canyon snake across the western United States today.

"This is exciting because explaining how early Mars could have been warm and wet enough to form the ancient valleys had scientists scratching their heads for the past 30 years," said Ramirez. "We think we may have a credible solution to this great mystery."

The researchers note that one alternative theory is that the Martian valleys formed after large meteorites bombarded the planet, generating steam atmospheres that then rained out. But this mechanism cannot produce the large volumes of water thought necessary to carve the valleys.

"We think that there is no way to form the ancient valleys with any of the alternate cold early Mars models," said Ramirez. "However, the problem with selling a warm early Mars is that nobody had been able to put forth a feasible mechanism in the past three decades. So, we hope that our results will get people to reconsider their positions."

Ramirez and post-doctoral researcher Ravi Kopparapu co-developed a one-dimensional climate model to demonstrate the possibility that the gas levels from volcanic activity could have created enough hydrogen and carbon dioxide to form a greenhouse and raise temperatures sufficiently to allow for liquid water. Once they developed the model, Ramirez ran the model using new hydrogen absorption data and used it to recreate the conditions on early Mars, a time when the sun was about 30 percent less bright than it is today.

"It's kind of surprising to think that Mars could have been warm and wet because at the time the sun was much dimmer," Ramirez said.

Mars' mantle appears to be more reduced than Earth's, based on evidence from Shergotty, Nahkla, and Chassigny meteorites, Martian meteorites named for the towns near which they were found. A more reduced mantle outgasses more hydrogen relative to water, thus bolstering the hydrogen greenhouse effect.

"The hydrogen molecule is symmetric and appears to be quite boring by itself," said Ramirez. "However, other background gases, such as carbon dioxide, can perturb it and get it to function as a powerful greenhouse gas at wavelengths where carbon dioxide and water don't absorb too strongly. So, hydrogen fills in the gaps left by the other two greenhouse gases."

In addition to Ramirez, Kopparapu and Kasting, researchers on the project include Michael E. Zugger, senior research engineer, Applied Research Laboratory, Penn State; Tyler D. Robinson, University of Washington; and Richard Freedman, SETI Institute.

Support for the research comes from NASA Astrobiology Institute's Virtual Planetary Laboratory.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>