Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unprecedented early warning of El Niño succeeds

19.03.2015

The current El Niño event has been predicted by an international team of scientists more than one year ago – earlier than ever before. This breakthrough in forecasting the most important phenomenon of natural climate variability has been enabled by novel approach of complex networks analysis of atmospheric temperature data from the Pacific. Such forecast can help farmers in Brazil, Australia or India to prepare and for instance seed the right crops. In an unusual move, the scientists had published their unprecedented early warning early on – fully aware of the reputational risks.

“While conventional methods are not able to yield a reasonably reliable El Niño prediction more than six months before the event, our method at least doubles the warning time,” says Armin Bunde of Justus-Liebig-Universität Gießen (JLU) who along with his colleague Josef Ludescher led the study.


The current El Niño event

The team detected evidence for the current El Niño already in September 2013. Their forecast appeared in the Proceedings of the US National Academy of Sciences in February 2014, and was now proven to be right.

Predictions by other, much bigger models wobbled up and down and as late as November 2014 gave a likelihood of only 58 percent that an El Niño will arrive. In contrast, the new and early forecast was stable over the whole period before the event and provided a significantly higher probability of 75 percent.

The US National Oceanic and Atmospheric Administration only recently declared that El Niño arrived – the event started last year, but it has to last for some time to be officially recognized. Japan’s weather bureau saw the conditions fulfilled in December last year.

**Impacts can hit hard on farmers and fishermen**

The current El Niño is very weak and will likely not have the devastating impacts it had in other years. Yet some experts think that the tropical cyclone that sadly hit Vanuatu might now enhance westerly winds in the Pacific region – and this in turn might strengthen the El Niño. Remarkably, the new methodology was able to correctly anticipate the phenomenon despite the weak signal; it cannot predict the strength or duration of the event.

Peruvian fishermen dubbed the irregular warming of the Eastern Pacific ‘El Niño’, Spanish for ‘the Christ child’ or literally the ‘boy child’, because it usually appears every few years at some time around Christmas when the birth of Jesus is celebrated. It is part of a more general pattern of the Pacific ocean-atmosphere system called ENSO, which includes anomalous cold episodes called La Niña. In the past, it linked for instance to empty fishing-nets in Peru, but also floods in Ecuador and droughts in Australia, thus affecting farmers.

**Advancing insight into how the phenomenon comes about**

“The causes of this phenomenon are so far poorly understood – our methodology might now be the key to open a door to gain insight into the intricate mechanisms that trigger El Niño,” says Hans Joachim Schellnhuber, co-author of the study and director of the Potsdam Institute for Climate Impact Research. “Using data from more than 200 points in the Pacific, we see how interactions between distant sites are building up over time in the ocean-atmosphere-system, bringing about the warming events. It is like an orchestra of 200 musicians playing together. If the different regions in the Pacific are rather playing their own tunes, like soloists, no El Niño develops. So this is what we use to derive our warning. There's a harmony building up – which collapses when the event finally arrives. So physically this might be a resonance phenomenon.”

„What we do, using modern network approaches, is at the crossroads of mathematics and physics,“ says co-author Shlomo Havlin of the Bar-Ilan University of Israel. “When we used this data to hindcast El Niños of the past, we found that the alarms are correct in three times out of four – which is a lot, given the complexity of the phenomenon. Moreover, the algorithm our team developed already correctly predicted in 2011 that in 2012 there would be no El Niño, while officials up to September of that year said there would be such an event.” The scientists will now seek to further develop their methodology. The aim is to integrate more data in order to be able to forecast even the strength and the duration of the El Niños to come.

Article in which the warning for the current El Niño is published: Ludescher, J., Gozolchiani, A., Bogachev, M.I., Bunde, A., Havlin, S., Schellnhuber, H.J. (2014): Very early warning of next El Niño. Proceedings of the National Academy of Sciences [DOI: 0.1073/pnas.1323058111]

Weblink to this article: www.pnas.org/content/early/2014/02/07/1323058111

Article in which the methodology is published: Ludescher, J., Gozolchiani, A., Bogachev, M.I., Bunde, A., Havlin, S., Schellnhuber, H.J. (2013): Improved El Niño frorecasting by cooperativity detection. Proceedings of the National Academy of Sciences [DOI:10.1073/pnas.1309353110]

Weblink to this article: www.pnas.org/cgi/doi/10.1073/pnas.1309353110

For further information please contact:
PIK press office
Jonas Viering, Sarah Messina
Phone: +49 331 288 2507
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

Prof. Dr. Armin Bunde
Institut für Theoretische Physik der Justus-Liebig-Universität Gießen (JLU)
Telefon: +49 641 99-33375
Mobil: +49 157 33 14 55 55
E-Mail: arminbunde00@googlemail.com

Jonas Viering | PIK Potsdam
Further information:
http://www.pik-potsdam.de

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>