Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Pittsburgh Geologists Map Prehistoric Climate Changes in Canada’s Yukon Territory

09.05.2012
Pitt study one of many across the nation focused on understanding Arctic region’s climate changes

Researchers at the University of Pittsburgh have joined an international group of scientists to study past climate changes in the Arctic.

Comprising geologists from Pitt’s Department of Geology and Planetary Science, the team has analyzed sedimentary and geochemical records of water-level changes in Rantin Lake, located in the boreal forest of Canada’s southeastern Yukon Territory.

The results were published online in the April issue of Journal of Paleolimnology as one of 18 articles dedicated to reconstructing Arctic lake sediments climate and environmental changes during the Holocene (about 12,000 years before present day).

“During the last 10,000 years, there have been certain times in which rapid climate change events occurred,” said David Pompeani, lead author and a Pitt PhD geology student. “By analyzing Rantin Lake, we’ve contributed a piece of the puzzle toward mapping the timing and magnitude of these prehistoric events throughout the Arctic.”

Rantin Lake is part of a watershed containing a series of small lakes hydrologically connected through groundwater flow. The regional climate is subarctic and characterized by warm, wet summers and dry, cold winters. The lake is located at 60 degrees north in the Canadian Arctic, only 30 degrees away from the North Pole, where climate change is expected to be amplified.

In July 2006, the Pitt team—including Mark Abbott, associate professor of geology and planetary science, and Byron Steinman, a former PhD geology student (now a postdoctoral researcher at Penn State University)—collected two sediment cores from the lake for analysis. The sediment cores were split and analyzed for paleoclimate proxy indicators, including geochemical composition, sedimentary structure, and macrofossil content (that which is visible without a microscope). The amount of water in a lake is directly related to its depth. Therefore, a loss in water during droughts is recorded by drop in lake levels, whereas wet periods are characterized by deep waters.

Using these proxy indicators, the researchers were able to make inferences about past variations in the balance between precipitation and evaporation in the southern Yukon. A comparison of the lake-level proxies with a previously developed fossil pollen record from the same lake found that rapid vegetation changes over the Holocene also occurred during shifts in the precipitation/evaporation balance, suggesting hydrologic conditions played an integral role in the evolution of the Yukon’s ecosystem. The development of unique shallow-water sediment at the deep-water core site indicated that lake levels dropped significantly during a “megadrought” in the early Holocene.

“About 8,400 years ago, the lake almost dried out,” said Pompeani. “We documented the timing of this drought and studied its transition to conditions more typical of what we observed in the late Holocene.”

Pitt’s study, says Pompeani, contributes to the long-term perspective on natural climate variability that is needed to understand historically unprecedented changes now occurring in the Arctic. Rapid changes in the Arctic climate system that occurred in the relatively recent past can be compared with climate models to improve the understanding of the processes responsible for such nonlinear changes.

Funding for this project was provided by the National Science Foundation.

The Holocene climate project focuses on climate records from the last 8,000 years, including two focus regions: eastern Beringia and the northwest Atlantic. For more information on the Holocene climate project, visit www.arcus.org/synthesis8k/index.php

B. Rose Huber | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Earth Sciences:

nachricht Upwards with the “bubble shuttle”: How sea floor microbes get involved with methane reduction in the water column
27.05.2020 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht An international team including scientists from MARUM discovered ongoing and future tropical diversity decline
26.05.2020 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

An MRI technique has been developed to improve the detection of tumors

03.06.2020 | Medical Engineering

K-State study reveals asymmetry in spin directions of galaxies

03.06.2020 | Physics and Astronomy

The cascade to criticality

03.06.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>