Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding tiny droplets can make for better weather forecasts

09.05.2016

Climate change models also benefit from understanding fundamental thermodynamics of water droplets

When you see how difficult it is to get even next week's weather forecast right, you can imagine the challenges researchers are faced with when it comes to predicting the weather decades from now.


An image of two coalescing water droplets. The figure to the left shows a snapshot from a molecular dynamics simulation, where the small dots represent water molecules. The figure to the right illustrates the interface transfer coefficient for heat transfer, where the blue color means that the resistance to transfer is large. It is difficult to transport heat into or out of the region where the two droplets merge.

Illustration: Øivind Wilhelmsen, SINTEF Energi

Climatologists need good models to predict climate change over time, but to predict how the Earth's climate is changing, they also need to understand how water droplets behave.

"Now, we are capable of describing the transfer of heat and mass across both planar (flat) and curved water interfaces," says Øivind Wilhelmsen, a research scientist at SINTEF Energy Research. SINTEF is Scandinavia's largest independent research institute.

Wilhelmsen's research relates to nonequilibrium thermodynamics, and deals with an extension of the theories of the Norwegian Nobel Prize winner Lars Onsager. Most of us will find his research quite difficult to understand. However, it is of fundamental importance, not just for predicting tomorrow's weather, but also for understanding how weather and climate are going to change in the years to come.

It turns out that the water cycle and precipitation are among the largest uncertainties in current climate models.

How water droplets grow

"Water evaporates all the time from oceans, rivers and lakes. Then, clouds form in the atmosphere. Tiny droplets form in the clouds and eventually fall down as rain when they have grown large enough. How quickly these processes occur, how large the clouds become and when the rain falls all depends on how fast mass and energy are transported across water interfaces," says Wilhelmsen.

Some of the uncertainty in current weather forecasts and climate models lies in our fundamental lack of understanding of these transport processes.

"How water droplets grow depends on their interface transfer coefficients, which Wilhelmsen has calculated," says Professor Signe Kjelstrup from the Department of Chemistry at the Norwegian University of Science and Technology (NTNU).

The research was part of Wilhelmsen's doctoral thesis, for which Kjelstrup was a supervisor, along with Professor Dick Bedeaux.

Many scientific fields can benefit from the research.

"This research is very general, and the results allow us to describe a wide range of processes across many scales, from evaporation from large lakes to the growth of water droplets that are only a few nanometres in size," says Bedeaux.

Scientists can use the results to better understand natural processes, through weather forecasts and climate models. However, the findings also have industrial relevance, and are useful in industrial processes that involve evaporation or condensation of water. One important example is steam turbines, which are the most widely used equipment to generate electricity on a worldwide basis.

"For many years, this has been a missing piece of the puzzle for several important processes, both in nature and in industry," explains Wilhelmsen.

"The findings are useful in a large number of applications, and we would like to see the results put to use," says Kjelstrup.

Started with little

The researchers began with only scattered fragments of a description of how droplets behave. Their first task was to connect the right pieces. There was no satisfactory description even for completely flat water interfaces.

"Now we are even able to describe curved interfaces," Kjelstrup says.

Water is special, and its peculiar properties are one of the reasons why life was able to evolve on Earth. These same properties posed huge challenges, however.

"We had to use all the tools at our disposal--experiments at low temperatures, molecular dynamics simulations at high temperatures, and advanced new theory to make everything fit together. This would not have been possible ten years ago," says Wilhelmsen.

Part of the challenge lies in fact that the relevant experiments can only be conducted at low temperatures. At high temperatures, researchers were able to use nonequilibrium molecular dynamics simulations, where they could mimic on a computer how real water molecules interact with each other in a simulated volume. These simulations allow researchers to capture the anomalous properties of water quite precisely.

At lower temperatures however, the simulations became so computationally demanding that they were impossible to carry out, even on the most powerful supercomputers available today. The scientists then had to use advanced theory to pull the pieces together.

How the curvature of water droplets influences weather and climate

When water droplets first form in the atmosphere, they are very small. They then grow almost a million times in size before they eventually fall as raindrops. If we can determine exactly how fast water droplets grow under certain conditions, we can more easily predict when and how much it is going to rain.

"Since the water droplets are very small when they first form, the curvature of their interfaces affects how fast they grow," says Wilhelmsen.

The water droplets first grow by absorbing water from the atmosphere, and they are almost spherical in shape during this process. When they have become big enough, two water droplets can also collide and merge, or coalesce, into a bigger drop.

"We are now, for the first time, capable of describing how the transport of heat and mass occurs across water interfaces as two water droplets are coalescing. Here, the geometry and the curvature become more complicated," says Professor Bedeaux.

"Water droplet coalescence is an important mechanism in precipitation (as rain) in the tropics," says Wilhelmsen.

Fundamental research

The scientists want to emphasize that their work is fundamental research that provides a new understanding of processes that we have known about for a long time. But at the same time, the consequences of the findings can be substantial.

"We have now figured out a new piece of the puzzle. This piece can be used in climate models and weather forecasts to improve our understanding--not only of how the weather will be like tomorrow, but also of how weather and climate will evolve in the future. It is important to reduce the uncertainty in current climate models because this will allow us to convince more people that it is super-important to act as quickly as possible to do something about the global warming," says Wilhelmsen.

###

The research has been published in Physical Review E and was undertaken in collaboration with the Institute of Fluid Mechanics at the Friedrich-Alexander University Erlangen-Nuremberg in Germany. Wilhemsen's co-authors are D Thuat T. Trinh, Anders Lervik and Vijay Kumar Badam, along with Kjestrup and Bedeaux.

Øivind Wilhelmsen | EurekAlert!

Further reports about: Atmosphere climate models clouds water droplets

More articles from Earth Sciences:

nachricht Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle
22.06.2018 | Technical University of Denmark

nachricht Polar ice may be softer than we thought
22.06.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>