Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Underlying ocean melts ice shelf, speeds up glacier movement

13.09.2013
Warm ocean water, not warm air, is melting the Pine Island Glacier's floating ice shelf in Antarctica and may be the culprit for increased melting of other ice shelves, according to an international team of researchers.

"We've been dumping heat into the atmosphere for years and the oceans have been doing their job, taking it out of the air and into the ocean," said Sridhar Anandakrishnan, professor of geosciences, Penn State. "Eventually, with all that atmospheric heat, the oceans will heat up."


This is a researcher's remote field camp on Pine Island Glacier.

Credit: Kiya Riverman, Penn State

The researchers looked at the remote Pine Island Glacier, a major outlet of the West Antarctic Ice Sheet because it has rapidly thinned and accelerated in the recent past.

"It has taken years and years to do the logistics because it is so remote from established permanent bases," said Anandakrishnan.

Pine Island Glacier or PIG lies far from McMurdo base, the usual location of American research in Antarctica. Work done in the southern hemisphere's summer, December through January 2012-13, included drilling holes in the ice to place a variety of instruments and using radar to map the underside of the ice shelf and the bottom of the ocean. Penn State researchers did the geophysics for the project and the research team's results are reported today (Sept. 13) in Science.

The ice shelf is melting more rapidly from below for a number of reasons. The oceans are warmer than they have been in the past and water can transfer more heat than air. More importantly, the terrain beneath the ice shelf is a series of channels. The floating ice in the channel has ample room beneath it for ocean water to flow in. The water melts some of the ice beneath and cools. If the water remained in the channel, the water would eventually cool to a point where it was not melting much ice, but the channels allow the water to flow out to the open ocean and warmer water to flow in, again melting the ice shelf from beneath.

"The way the ocean water is melting the ice shelf is a deeply non-uniform way," said Anandakrishnan. "That's going to be more effective in breaking these ice shelves apart."

The breaking apart of the ice shelf in the channels is similar to removing an ice jam from a river. The shelf was plugging the channel, but once it is gone, the glacier moves more rapidly toward the sea, forming more ice shelf, but removing large amounts of ice from the glacier.

The melting of floating ice shelves does not contribute to sea level rise because once they are in the water, the ice shelves have already contributed to sea level rise. However, most of the Antarctic glaciers are on land, and rapidly adding new ice shelf material to the floating mass will increase sea level rise.

"Antarctica is relatively stable, but that won't last forever, said Anandakrishnan. "This is a harbinger of what will happen."

The researchers believe that the interaction of the ocean beneath the ice shelf and melting of the ice shelf is an important variable that should be incorporated into the sea level rise models of global warming. Other recent research shows that without the channelized underbelly of the ice shelf and glacier, melting would be even more rapid.

"The Antarctic has been relatively quiet as a contributor to sea rise," said Anandakrishnan. "What this work shows is that we have been blind to a huge phenomenon, something that will be as big a player in sea level rise in the next century as any other contributor."

Also working on this project were Tim Stanton, research professor, and William J. Shaw, research assistant professor, Department of Oceanography, Naval Postgraduate School; Martin Truffer, professor of physics, Geophysical Institute, University of Alaska, Fairbanks; Hugh Corr, British Antarctic Survey; Leo E. Peters, research associate, Kiya L. Riverman, graduate student, both of Penn State; Robert Bindschadler, emeritus scientist, NASA Goddard Space Flight Center; and David M. Holland, professor of mathematics, New York University.

The National Science Foundation, NASA and the Natural Environment Research Council, UK, supported this work.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>