Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UM Scientists Use New Approach to Reveal Function of Greenland’s Ice Sheet

16.08.2013
Findings from a large-scale ice drilling study on the Greenland ice sheet by a team of University of Montana and University of Wyoming researchers may revise the models used to predict how ice sheets move.

The work was published in Science on Aug. 15 in a paper titled “Basal Drainage System Response to Increasing Surface Melt on the Greenland Ice Sheet.”



The bed of the Greenland ice sheet, hidden beneath hundreds to thousands of meters of ice, is one of the most isolated locations on earth – making it difficult for scientists to understand just how the second largest ice body on the planet functions.Meierbachtol

Led by UM glaciologist Joel Harper and with backing from the National Science Foundation, the team of researchers set out to observe and record exactly how melt water flows along the bed of the ice sheet and how that water influences ice sheet acceleration.

“Our ability to predict and understand what’s going to happen in the future hinges on our ability to have an adequate understanding of the present processes and how those might influence future ice sheet behavior under climate changes,” said Toby Meierbachtol, the study’s lead author and a UM doctoral student.

The team employed a unique strategy for collecting widespread measurements of the conditions at the bottom of the ice sheet.

“Our approach was to be lightweight and nimble so that we could drill lots of boreholes all over the ice sheet.” Harper said.

Using a drill designed by Neil Humphrey, UW professor and co-author on the paper, the team melted 23 boreholes through the ice sheet to measure the pressure and flow conditions of the water under the ice. The drill was easily transported by helicopter and even could be carried short distances by six people.

The other component to their strategy was to carefully select a small and hard-working field team. The group comprised two professors, two doctoral students, two graduate students and two undergraduate students.

According to Harper, the team selection was of critical importance. He needed mentally tough team members who both excelled academically and also could withstand difficult conditions. “Our success relied on finding people who were equally comfortable fiddling with circuit boards or fixing a broken generator, and doing those things in the cold and with a relentless wind blowing,” he said.

Once the data was analyzed, the research team discovered that it didn’t match up with the working hypotheses for water flow beneath the ice sheet. This led the scientists to surmise that there are other critical processes at work that had been missing – one possibility being that as the ice sheet accelerates, the acceleration itself opens up space between the ice and bedrock and expands the drainage network.

“This process is largely neglected in current interpretations,” Meierbachtol said. “We need to pull ourselves away from the narrow vision and start to explore some of the other options for transient growth.”

Future warming likely will be enhanced over the Artic. This body of research will provide a more accurate assessment of the impacts of future warming on Greenland.

“Much climate research focuses on documenting recent and ongoing changes, or making projections about future change,” Harper said. “We can only go so far with that work before we hit stumbling blocks resulting from our incomplete understanding of how various components of the climate system work. Our research is focused on unraveling the fundamental physical processes controlling how ice sheets move when sitting on flowing melt water. This basic research is essential to increasing confidence in our understanding of climate and sea level change.”

The full paper can be accessed online at http://www.sciencemag.org/.

Joel Harper | EurekAlert!
Further information:
http://www.sciencemag.org/
http://www.umt.edu

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>