Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Typhoons rain away wrath

01.04.2015

Accurately anticipating an approaching typhoon's destructive force makes all the difference in advance preparations and as a consequence, the cost in lives. But over the decades, climate scientists have not made the same headway in this regard as they have in predicting a typhoon's trajectory.

Researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) have found that an aspect of a typhoon being ignored by current forecasting models plays a significant role in determining the level of havoc it will wreak upon landfall.


Heaviness of rainfall around the typhoon's center is marked by red, green and blue in that order. Areas with the heaviest rainfall, in red and green are around the central column. The Tropical Rainfall Measuring Mission (TRMM) satellite which captured the image is a joint mission between NASA and JAXA.

Credit: NASA Earth Observatory.

Typhoons dump a lot of water in the form of rain. The researchers have demonstrated that the energy lost to friction between this falling rain and the whipping winds of a typhoon can lessen the typhoon's destructive force, or intensity, by as much as 30 percent.

The paper, authored by researchers from OIST's Fluid Mechanics Unit and Continuum Physics Unit, appeared online in Geophysical Research Letters.

The intensity of a typhoon is set by the wind speed at the base of the typhoon's central column. To predict this speed, scientists currently model typhoons as engines fueled by heat from the ocean water.

Heat is carried away from the ocean surface by hot water vapor. This vapor is collected by the spiraling winds of the typhoon and tossed up along the typhoon's central column. As it moves away from the warmth of the ocean, it cools back to water and falls as rain. In the typhoon's central column itself this rainfall amounts to some 2 trillion liters of water per day, which is comparable to a large river falling out of the sky.

"The pace at which energy is lost to friction between rain and winds in a single typhoon would be sufficient to keep the Japanese economy running," said Tapan Sabuwala from OIST's Continuum Physics Unit, the first author of the paper.

The OIST researchers compared their predictions of typhoon intensity to satellite data compiled over the past thirty years and found that the margins of error between prediction and observation reduced significantly when the friction between rain and winds was factored in.

"For this study we used a simple mathematical model. We are now looking into state-of-the-art models that people use for actual forecasting," said Pinaki Chakraborty, head of OIST's Fluid Mechanics Unit.

Climate change is increasing ocean temperatures worldwide. This is expected to lead to stronger typhoons. Predicting their intensities accurately will be crucial to anticipating damages and minimizing loss of lives. The OIST research is a major step in this direction.

Media Contact

Kaoru Natori
kaoru.natori@oist.jp
81-989-662-389

 @oistedu

http://www.oist.jp/ 

Kaoru Natori | EurekAlert!

More articles from Earth Sciences:

nachricht Abrupt cloud clearing events over southeast Atlantic Ocean are new piece in climate puzzle
23.07.2018 | University of Kansas

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

FAU researchers identify Parkinson's disease as a possible autoimmune disease

23.07.2018 | Health and Medicine

O2 stable hydrogenases for applications

23.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>