Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tropical Storm Heidi's Temperature, Cloud Heights and Rainfall Grabbed by NASA Satellites

13.01.2012
SA satellites got a look inside Tropical Storm Heidi over the last several days and provided data that enabled forecasters at the Joint Typhoon Warning Center to know she was going to strengthen before making landfall, and she did.

Two instruments on NASA's Aqua satellite and two instruments on NASA's TRMM satellite provided forecasters with the rate at which rain was falling within Heidi, cloud heights and cloud and sea surface temperatures. All of those factors are added together to determine the behavior of a tropical cyclone. NASA data showed warm sea surface temperatures giving power to Heidi before landfall, and showed rainfall intensifying, indicating the tropical storm was gaining strength. Cloud heights and temperatures also clue forecasters in on a tropical storm's behavior, as the higher and colder the cloud tops, the more uplift (strength) and stronger the storm.

Heidi made landfall on January 11, 2012. On January, 12, 2012 at 8:54 p.m. AWST (local time, Western Australian), the Australian Bureau of Meteorology gave an "all clear" for Port Hedland, Cyclone warning for inland areas of central Pilbara. Now in effect is a cyclone warning for inland areas of the central Pilbara to the northeast of Tom Price.

Heidi continues to weaken as it moves further inland and is expected to be below Tropical Cyclone intensity later this afternoon or evening.

Over the days of January 10, 11, 12, 2012, infrared data from the Atmospheric Infrared Sounder (AIRS) instrument on NASA's Aqua satellite showed cloud top temperatures growing increasingly colder (purple is the coldest, greater than -63F) as Heidi strengthened and approached the Pilbara coastline. The images were taken at 16:59 UTC on Jan. 10; at 17:47 UTC on Jan. 11; and at 5:53 UTC on Jan. 12, 2012. When NASA's Aqua satellite passed over Heidi on January 12, another instrument aboard called the Moderate Resolution Imaging Spectroradiometer (MODIS) captured a visible image of the storm. The image showed that Heidi maintained her well-rounded shape and even appeared to hint at an eye in the center after making landfall on the Pilbara Coast of Western Australia.

NASA's Tropical Rainfall Measuring Mission (TRMM) satellite provides measurement of rainfall rates and cloud heights in the tropics, and both of those are very important in forecasting tropical cyclone behavior. TRMM measured the rainfall within Heidi on January 10 and 12 and noticed more areas of heavy rain on the twelfth as the storm intensified.

On January 10, 2012 at 1544 UTC (10:44 a.m. EST) the TRMM satellite passed above tropical storm Heidi as it was forming off the northwestern coast of Australia. Heidi is the first named tropical cyclone to hit Australia this season. An analysis of rainfall from TRMM Microwave Imager (TMI) and Precipitation Radar (PR) data showed that Heidi was starting to get organized with bands of heavy convective rainfall spiraling toward the center of the storm. Heidi was dropping rainfall at a rate of over 50mm/hr (~2 inches) in some areas.

In a 3-D image created by TRMM data on January 12, some powerful storms within Heidi were reaching heights above 15km (9.3 miles). Rainfall data from TRMM PR data revealed that Heidi's location was defined by a rain band circling the center of the storm. This analysis also showed that very heavy rainfall from Heidi's outer bands was hitting the Australian coast.

Heidi caused several thousand power outages in its passage. Over 4 inches (100 millimeters) of rainfall was reported near Hedland, causing flooding. There were some reports of isolated totals as high as almost 8 inches (200 millimeters) Of course, rivers and stream flooding may continue for a couple of days.

According to the Australian Broadcasting Corporation, Tropical Storm Heidi was Hedland's first cyclone since 2007. That's when Cyclone George hit the region and made landfall in the same exact location. George was a category four storm and Heidi reached Category 2. Heidi is now a remnant low pressure area far inland near Paraburdoo.

Text Credit: Rob Gutro
NASA's Goddard Space Flight Center, Greenbelt, Md.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2012/h2012_heidi.html

More articles from Earth Sciences:

nachricht In the Arctic, spring snowmelt triggers fresh CO2 production
06.07.2020 | San Diego State University

nachricht The latest findings on the MOSAiC floe
06.07.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Quick notes in the genome

07.07.2020 | Life Sciences

Limitations of Super-Resolution Microscopy Overcome

07.07.2020 | Life Sciences

Put into the right light - Reproducible and sustainable coupling reactions

07.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>