Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tropical Storm Amanda Gets Bisected and Animated by NASA's CloudSat

30.05.2014

Tropical Storm Amanda continues to weaken in the eastern Pacific from dry air and wind shear. NASA's CloudSat satellite captured a view of the storm from the side revealing heavy precipitation when the storm was the most powerful May Eastern Pacific on record.

NASA's CloudSat satellite flew over Hurricane Amanda in the east Pacific on May 25, 2014 at 2100 UTC (5 p.m. EDT) and was about 40 km (24.8 miles) outside of the center of the storm.


This animation shows how Cloudsat was able to gather the information seen in the image above.

Image Credit: Colorado State University

Hurricane Amanda contained estimated maximum winds of 130 knots (150 mph/240 kph) and minimum pressure of 935 millibars at the time of this overpass. CloudSat passed over the eastern section of the storm, after it reached peak intensity earlier in the day. On May 25 Hurricane Amanda had become the strongest May hurricane on record for the Eastern Pacific basin.

CloudSat data showed a deep area of moderate to heavy-moderate precipitation below the freezing level (where precipitation changes from frozen to liquid). Cloudsat also showed a deep anvil cloud deck that extended northward with smaller cumulus clouds detectable beneath.

... more about:
»CloudSat »Colorado »Depression »EDT »Hurricane »NHC »Pacific »Space »UTC »clouds »satellite

Four days later, Amanda quickly weakened as a result of dry air moving into the system and wind shear.

National Hurricane Center (NHC) forecaster Brennan noted at 5 a.m. EDT on May 29 in the NHC Discussion that "Amanda has come unglued during the past few hours, with the remaining deep convection now located more than 2 degrees to the northeast of the low-level center. This weakening appears to be due to the usually potent combination of vertical wind shear and mid/upper-level dry air advecting (moving) over the cyclone."

By 11 a.m. EDT (8 a.m. PDT) on May 29, the National Hurricane Center (NHC) reported that Amanda weakened to a depression. The center of Tropical Depression Amanda was located near latitude 16.3 north and longitude 110.0 west, about 455 miles (735 km) south of the southern tip of Baja California, Mexico. Because Amanda was so far from land, there were no warnings or watches in effect.

Amanda's maximum sustained winds have decreased to near 35 mph (55Kph) with higher gusts. The NHC discussion at 11 a.m. EDT noted that Amanda's center had become increasingly elongated and diffuse. The estimated minimum central pressure is 1006 millibars.

The depression was moving toward the east near 7 mph (11 kph) and NHC expects a slower eastward or east-northeastward motion during the next day or so. The NHC expects Amanda to become a remnant low in about a day.

Text credit:  Natalie D. Tourville/Rob Gutro
Colorado State University/NASA's Goddard Space Flight Center

Rob Gutro | Eurek Alert!

Further reports about: CloudSat Colorado Depression EDT Hurricane NHC Pacific Space UTC clouds satellite

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>