Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking Shuttle Exhaust Reveals More Information About Atmospheric Winds

29.08.2012
On July 8, 2011 the Space Shuttle Atlantis launched for the very last time. On that historic day, as the world watched its last ascent up into orbit and commentators discussed the program's contributions to space flight and scientific research over 20 years, the shuttle helped spawn one last experiment. As the shuttle reached a height of about 70 miles over the east coast of the U.S., it released – as it always did shortly after launch – 350 tons of water vapor exhaust.

As the plume of vapor spread and floated on air currents high in Earth's atmosphere, it crossed through the observation paths of seven separate sets of instruments. A group of scientists, reporting in online in the Journal of Geophysical Research on August 27, 2012, tracked the plume to learn more about the airflow in the Mesosphere and Lower Thermosphere (MLT) -- a region that is typically quite hard to study.


After the Space Shuttle Atlantis launched for the final time at 11:29 AM (EDT) on July 8, 2011, scientist tracked water vapor in its exhaust on its travels throughout the upper atmosphere. Credit: NASA Photo/Houston Chronicle, Smiley N. Pool

The team found the water vapor spread much faster than expected and that within 21 hours much of it collected near the arctic where it formed unusually bright high altitude clouds of a kind known as polar mesospheric clouds (PMCs). Such information will help improve global circulation models of air movement in the upper atmosphere, and also help with ongoing studies of PMCs.

"Polar mesospheric clouds are the highest clouds on Earth," says space scientist Michael Stevens at the Naval Research Laboratory, Washington, who is first author on the paper. "They shine brightly when the sun is just below the horizon and typically occur over polar regions in the summer. There is some evidence that they are increasing in number and people want to know if this is indicative of climate change or something else that we don't understand."

Since they shine at night, PMCs are also known as noctilucent clouds, and they can serve as an indicator not just of temperature changes, but also of how currents and waves move high in Earth's atmosphere. A visible cloud of water vapor from something like the shuttle also offers a serendipitous way to observe such motions in the upper winds.

"The plume from the shuttle becomes a ready-made experiment to observe the movement in the atmosphere," says Charles Jackman, a scientist at NASA's Goddard Space Flight Center in Greenbelt, Md. who is the project scientist for a NASA mission called Aeronomy Ice in the Mesosphere (AIM) that specifically observes PMCs. "What this team found is interesting since the plume moved so quickly to the pole, indicating that the winds appear much stronger at those latitudes than was thought."

To track the plume across the sky, the scientists collated seven sets of observations, including data from AIM. The first two sets of instruments to see the plume were on a NASA spacecraft called TIMED (Thermosphere Ionosphere Mesosphere Energetics and Dynamics). Next the plume was viewed through the Sub-Millimeter Radiometer on the Swedish Odin satellite. When the plume reached higher latitudes, it was picked up by the ground-based Microwave Spectrometer at the Institute of Atmospheric Physics in Kühlungsborn, Germany as well as an identical ground-based water vapor instrument called cWASPAM1 at the Arctic Lidar Observatory for Middle Atmospheric Research (ALOMAR) in Andenes, Norway. The plume collated into its final shape over the arctic, as a new, extremely bright PMC on July 9, 2011 and there, it could be observed from above by the AIM satellite flying overhead, and from below by another instrument at ALOMAR called the RMR lidar.

Over the course of the plume's travels, these observations showed it spreading horizontally over a distance of some 2000 to 2500 miles. Those parts that drifted into the high latitudes near the North Pole formed ice particles which settled into layers of PMCs down at about 55 miles above Earth’s surface. The speed with which the plume arrived at the arctic was a surprise.

"The speed of the movement in the upper atmosphere gives us new information for our models," says Stevens. "As you get higher up in the atmosphere, we just don't have as many measurements of wind speeds or temperatures. The take-away message here is that we need to improve the models of that region."

Since observations of PMCs may be connected to global climate, it's important to subtract out sporadic effects such as shuttle exhaust from other consistent, long-term effects.

"One of AIM's big goals is to find out how much of the cloud's behavior is naturally induced versus man-made," says Jackman. "This last shuttle launch will help researchers separate the shuttle exhaust from the rest of the observations."

Indeed, the AIM observations showed a clear difference between typical PMCs and this shuttle-made one. Normally smaller particles exist at the top, with larger ones at the bottom. The shuttle plume PMC showed a reversed configuration, with larger particles at the top, and smaller at the bottom – offering a way to separate out such clouds in the historical record.

For more information about NASA’s AIM mission, visit:
www.nasa.gov/aim
For more information about NASA’s TIMED mission, visit:
http://www.timed.jhuapl.edu/WWW/index.php
Karen C. Fox
NASA Goddard Space Flight Center, Greenbelt, MD.

Susan Hendrix | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/aim/news/shuttle-exhaust.html

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>