Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking down climate change with radar eyes

17.07.2019

Long-term measurements document sea level rise in the Arctic

Over the past 22 years, sea levels in the Arctic have risen an average of 2.2 millimeters per year. This is the conclusion of a Danish-German research team after evaluating 1.5 billion radar measurements of various satellites using specially developed algorithms.


The map illustrates that the average change in the Arctic sea level varies regionally.

Credit: DTU/DGFI-TUM

Usage Restrictions: Free for use in reporting on TUM, with the copyright noted

"The Arctic is a hotspot of climate change," explains Prof. Florian Seitz of the German Geodetic Research Institute at the Technical University of Munich (TUM). "Due to rising temperatures, the glaciers of Greenland are receding. At the same time sea ice is melting. Every year, billions of liters of meltwater are released into the ocean."

The enormous volumes of fresh water released in the Arctic not only raise the sea level, they also have the potential to change the system of global ocean currents - and thus, our climate.

But how fast do sea levels rise? And precisely what effect does this have? To answer these questions, climatologists and oceanographers require specific measurements over as long a period as possible.

In a collaborative effort, researchers from the Technical University of Denmark (DTU) and from the TUM have now documented sea-level changes in the Arctic over more than two decades.

"This study is based on radar measurements from space via so-called altimetry satellites and covers the period from 1991 to 2018. Thus, we have obtained the most complete and precise overview of the sea level changes in the Arctic Ocean to date. This information is important in terms of being able to estimate future sea levels associated with climate change," says Stine Kildegaard Rose, Ph.D., researcher at Space DTU.

Finding water with algorithms

"The challenge lies in finding the water signals in the measured data: Radar satellites measure only the distance to the surface: Albeit, vast areas of the Arctic are covered with ice, which obscures the seawater," explains Dr. Marcello Passaro. The TUM researcher has developed algorithms to evaluate radar echoes reflected from the water where it reaches the surface through cracks in the ice.

Using these algorithms, Passaro processed and homogenized 1.5 billion radar measurements from the ERS-2 and Envisat satellites. On the basis of the signals tracked at the TUM, the DTU team worked on the post-processing of these data and added the measurements collected by the current CryoSat radar mission.

From monthly averages to a climate trend

The researchers created a map with lattice points to represent the monthly sea level elevations for the period between 1996 and 2018. The sum of the monthly maps reveals the long-term trend: The Arctic sea level rose by an average of 2.2 millimeters per year.

There are, however, significant regional differences. Within the Beaufort Gyre, north of Greenland, Canada and Alaska, sea levels rose twice as fast as on average - more than 10 centimeters in 22 years. The reason: The low-salinity meltwater collects here, while a steady east wind produces currents that prevent the meltwater from mixing with other ocean currents. Along the coast of Greenland, on the other hand, the sea level is falling - on the west coast by more than 5 mm per year, because the melting glaciers weaken the attractive force of gravity there.

"The homogenized and processed measurements will allow climate researchers and oceanographers to review and improve their models in the future," concludes Passaro.

###

Further information:

The work was funded by the European Space Agency ESA through the Climate Change Initiative (ESA CCI) project.

High-resolution image:

https://mediatum.ub.tum.de/1513220

Contact:

Prof. Dr. Florian Seitz
Technical University of Munich,
German Geodetic Research Institute (DGFI-TUM)
+49 89 23031-1106
florian.seitz@tum.de
http://www.dgfi.tum.de

Stine Kildegaard Rose, Ph.D.
DTU Space, National Space Institute, Technical University of Denmark
+45 22 41 96 22.
stine@space.dtu.dk

Media Contact

Stefanie Reiffert
stefanie.reiffert@tum.de
49-089-289-10519

 @TU_Muenchen

http://www.tum.de 

Stefanie Reiffert | EurekAlert!
Further information:
https://www.tum.de/nc/en/about-tum/news/press-releases/details/35579/
http://dx.doi.org/10.3390/rs11141672

More articles from Earth Sciences:

nachricht Shrinking of Greenland's glaciers began accelerating in 2000, research finds
12.12.2019 | Ohio State University

nachricht One-third of recent global methane increase comes from tropical Africa
11.12.2019 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Weizmann physicists image electrons flowing like water

12.12.2019 | Physics and Astronomy

Revealing the physics of the Sun with Parker Solar Probe

12.12.2019 | Physics and Astronomy

New technique to determine protein structures may solve biomedical puzzles

12.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>