Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny Creatures Point to Possible Climate Change

24.06.2011
Diatoms linked to solar activity, record increased storms in last century

A University of Arkansas researcher and her colleagues studied core sediments from a shallow boreal lake and found that storm activity has increased substantially over the past 150 years.

The rise in storm frequency appears to be linked to solar activity, but also may be linked to higher global temperatures resulting from increased amounts of greenhouse gases.

Sonja Hausmann and Falko Fye, professors of geosciences at the University of Arkansas; Isabelle Larocque-Tobler of the University of Bern, Switzerland; Pierre Richard of the University of Montréal, Canada; Reinhard Pienitz of Laval University, Québec City, Canada; and Guillaume St-Onge of the University of Québec at Rimouski, Canada, report their findings in The Holocene.

“We don’t really know if it is solar activity or if it is greenhouse gases because what we found correlates with both,” Hausmann said.

In the last 150 years, human activity has considerably increased the concentration of greenhouse gases in the atmosphere. Greenhouse gases trap heat in the lower atmosphere of Earth, raising the Earth’s temperature. Scientists have predicted that rising temperatures could lead to more frequent storms, and Hausmann’s evidence supports this.

However, Hausmann also compared the diatom-storm evidence to solar activity, which includes sunspots. Solar activity peaks and dips on 11-year and longer cycles. The diatom activity appears to fluctuate with the solar cycles, with stormy periods coinciding with high solar activity.

The researchers took core samples at Lac du Sommet, a shallow mountain lake in the Laurentian Mountains of eastern Canada. They were able to extend their climate reconstruction back 9,500 years.

Hausmann studies diatoms, unicellular algae with shells of silica, which remain in the sediments. Diatoms make excellent bioindicators, Hausmann said, because the diatom community composition changes with environmental changes in acidity, climate, nutrient availability and lake circulation.

By examining relationships between modern diatom communities and their environment, Hausmann and her colleagues can reconstruct various historic environmental changes quantitatively. In this case, they examined the residual effect of storms on the diatom communities in lake sediments. High winds cause the water column to circulate and mix the diatoms and nutrients in the water.

In the absence of wind, diatoms settle at the lake bottom where they have less light. The researchers compared the diatom community structures to wind records from a nearby weather station established in 1965 and found that they matched well. They then examined the diatom community structures for the past 9,500 years.

The diatom evidence shows that storms have increased substantially over the last 150 years, Hausmann said.

She and her colleagues compared these findings to other tiny proxies: non-biting midges and pollen. Midge larvae live in the lake sediment and act as good indicators of temperature changes in a given environment. At Lac du Sommet, the midge evidence shows that temperature, while variable, has not recently increased in the same manner. Pollen evidence tells a similar story.

“The diatoms do not show a temperature effect. They show wind,” Hausmann said. “We are looking at climate change, not just temperature differences.”

Hausmann will return to Lac du Sommet during decreased periods of solar activity to see if diatom activity shows a similar decrease.

CONTACTS:
Sonja Hausmann, assistant professor, geosciences
J. William Fulbright College of Arts and Sciences
479-575-6419, shausman@uark.edu
Melissa Lutz Blouin, director of science and research communications
University Relations
479-575-5555, blouin@uark.edu

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Pollen taxi for bacteria

18.07.2018 | Life Sciences

Biological signalling processes in intelligent materials

18.07.2018 | Life Sciences

Study suggests buried Internet infrastructure at risk as sea levels rise

18.07.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>