Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny clays curb big earthquakes

25.06.2010
California's San Andreas fault is notorious for repeatedly generating major earthquakes and for being on the brink of producing the next "big one" in a heavily populated area. But the famously violent fault also has quieter sections, where rocks easily slide against each other without giving rise to damaging quakes.

The relatively smooth movement, called creep, happens because the fault creates its own lubricants---slippery clays that form ultra-thin coatings on rock fragments, geologist Ben van der Pluijm and colleagues at the University of Michigan and Germany's Ernst-Moritz-Arndt Universität Institut für Geographie und Geologie report in the July issue of Geology.

The question of why some fault zones creep slowly and steadily while others lock for a time and then shift suddenly and violently, spawning earthquakes, has long puzzled scientists. Some have speculated that fluids facilitate slippage, while others have focused on serpentine---a greenish material that can alter to slippery talc.

But when van der Pluijm and colleagues analyzed samples of rock from an actively creeping segment that was brought up from a depth of two miles below the surface as part of the San Andreas Fault Observatory at Depth (SAFOD) project, they found very little talc. Instead, they found that fractured rock surfaces were coated with a thin layer of smectitic clay, less than 100 nanometers thick, that acts something like grease on ball bearings.

"For a long time, people thought you needed a lot of lubricant for creep to occur," said van der Pluijm, who is the Bruce R. Clark Collegiate Professor of Geology and Professor of the Environment. "What we can show is that you don't really need a lot; it just needs to be in the right place. It's a bit like real estate: location, location, location." The nanocoatings occur on the interfaces of broken-up bits of rock in exactly the places where they affect the fault's "weakness"---how easily it moves.

The technique of argon dating provided key evidence, when the researchers determined that these clays, found only in fault rock, formed relatively recently.

"The clays are growing in the fault zone, and the fault is coating its own pieces of fragmented rock," van der Pluijm said. "At some point there's enough coating that it begins to drive the behavior of the fault, and creeping kicks in."

If the fault is greasing itself, then why do earthquakes still occur?

"The problem is that the fault doesn't always move at strands where the coating sits," van der Pluijm said. The San Andreas fault is actually a network of faults, with new strands being added all the time. Because it takes some time for the slick nanocoatings to develop in a new strand, the unlubricated, new strand "gets stuck" for a time and then shifts in a violent spasm.

Although the samples obtained through SAFOD are from a depth of only about two miles, van der Pluijm and colleagues think it's likely the clay nanocoatings also are forming and driving fault behavior at greater depths. What's more, analyses of older, inactive strands suggest that the coatings have been facilitating creep for the millions of years of fault activity.

The SAFOD project, which is establishing the world's first underground earthquake observatory, is a major research component of EarthScope, an ambitious, $197-million federal program to investigate the forces that shaped the North American continent and the processes controlling earthquakes, volcanoes and other geological activity.

Van der Pluijm's coauthors on the paper are U-M assistant research scientist Anja Schleicher and Professor Laurence Warr of Ernst-Moritz-Arndt Universität Institut für Geographie und Geologie. The researchers received funding from the National Science Foundation and the Deutsche Forschungsgemeinschaft.

More information:

Ben van der Pluijm: http://www.ns.umich.edu/htdocs/public/experts/ExpDisplay.php?ExpID=781

San Andreas Fault Observatory at Depth: http://www.earthscope.org/observatories/safod

EarthScope: http://www.earthscope.org

Geology: http://geology.gsapubs.org/

National Science Foundation: http://www.nsf.gov/

Deutsche Forschungsgemeinschaft: http://www.dfg.de/en/index.jsp

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>