Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Time travel into the past of marginal seas: IOW expedition explores Canadian coastal waters

31.08.2015

Why and how have coastal waters undergone environmental changes during the last decades and centuries? Is it possible to distinguish between natural processes and anthropogenic influences that drive these changes? Can the well-studied Baltic Sea serve as a model for other marginal seas? These questions are guiding the current expedition of the research vessel MARIA S. MERIAN under the lead of the Leibniz Institute for Baltic Sea Research Warnemünde (IOW), which started on August 25, 2015, from Halifax, Canada. It will take the scientific crew from the St. Lawrence Estuary into the Gulf of St. Lawrence and further on along the Labrador coast into the Hudson Strait.

15 of the 25 scientific participants are IOW researchers; another 10 come from Canadian and U. S. research institutions. The four-week expedition has been coordinated by Detlef Schulz-Bull, head of the IOW Marine Chemistry department.


The MARIA S. MERIAN currently cruises Canadian coastal waters, to explore whether the "climate engine" North Atlantic has shaped the environmental conditions of that area during the past millennia.

IOW

“We want to know more about the factors that drive environmental changes of coastal ecosystems: Is it the climate with its fluctuations, the local current dynamics or certain biogeochemical processes that are typical for marginal seas? And what is the role of human impact factors such as eutrophication and environmental pollution?” Schulz-Bull explains the general scientific focus of the cruise.

“Our research program represents a kind of ‘time travel’, allowing us to distinguish between human and natural change drivers. On the one hand we aim at characterizing the current state of our study area, but we also want to explore its – by geological standards – recent past of the last 500 to 1000 years, which has left its traces in the deeper layers of the sea-bed.

The East-Canadian coastal waters, which we are exploring for the first time, are especially interesting in this context as they are in parts comparable to intensively researched marginal seas like the Baltic Sea, while other parts are more strongly influenced by open ocean waters,” the marine chemist further explains.

The expedition’s scientific program includes an extensive sampling campaign at 28 stations, microbiological experiments directly on board as well as computer simulations to extrapolate the results from the stations for the entire Gulf of St. Lawrence.

“Just like the Baltic Sea, the Gulf of St. Lawrence only has a narrow connection to the open North Atlantic with its high salinity. Hence, the gulf also exhibits salinity gradients typical for marginal seas: horizontally from the freshwater of the Lower St. Lawrence Estuary to the brackish areas further downstream to the higher salinities of the outer gulf, and vertically from the low-salinity of the surface waters to the deep saltwater layers, which rarely get mixed and therefore often are oxygen depleted,” says Detlef Schulz-Bull. On the cruise, water sampling and detailed CTD profiling will be used to characterize the properties und the structure of the water column as well as the gradients at each sampling station.

“We are particularly interested to find out whether different organisms have adapted to the variability of salt and oxygen conditions and whether this has influenced species diversity,” Schulz-Bull elaborates. For this purpose, the scientists will perform various onboard experiments with microbial communities isolated from different sampling sites and analyze the macrozoobenthos. Furthermore, nutrient and particulate matter analyses as well as satellite images will be used to get an overview of the spatial and temporal variability of primary production.

Schulz-Bull: “These investigations will provide us with a ‘snapshot’ of the current state of the study area, which gives us an impression of what makes the ecosystem St. Lawrence Gulf ‘tick’ at present. To understand its past, we additionally will take sediment cores at suitable sites. The chronologically layered deposits are like an archive, which allows us to reconstruct past environmental conditions.”

The history of anthropogenic pollution by pesticides, organochlorines and inorganic hazardous substances as mercury, for instance, can be traced through respective residues in the surface layers of the sea-bed. “Proxy investigations such as the analysis of microfossil diatoms and foraminifera in long sediment cores with lengths up to 18 meters, however, will help us to reconstruct climate and ocean circulation changes as long ago as 1000 years,” the project coordinator explains.

Comparable studies in the Baltic Sea have shown that the “climate engine” North Atlantic strongly influenced the environmental conditions, leading to several drastic changes over the last millennia. “Hopefully, the MERIAN expedition will provide the evidence whether the same processes shaped the Canadian marginal sea ecosystems,” concludes Detlef Schulz-Bull on the scientific program of the cruise.

The expedition ends on September 25, 2015, in St. John on Newfoundland, where the scientific crew will leave the ship.

Scientific Contact:
Prof. Dr. Detlef Schulz-Bull | Head of the IOW Marine Chemistry department
Phone: +49 (0)381 – 5197 310 | detlef.schulz-bull@io-warnemuende.de

Press and Public Relations at IOW:
Dr. Kristin Beck | Phone: +49 (0)381 – 5197 135 | kristin.beck@io-warnemuende.de
Dr. Barbara Hentzsch | Phone: +49 (0)381 – 5197 102 | barbara.hentzsch@io-warnemuende.de

The IOW is a member of the Leibniz Association with currently 89 research institutes and scientific infrastructure facilities. The focus of the Leibniz Institutes ranges from natural, engineering and environmental sciences to economic, social and space sciences as well as to the humanities. The institutes are jointly financed at the state and national levels. The Leibniz Institutes employ a total of 18.100 people, of whom 9.200 are scientists. The total budget of the institutes is 1.64 billion Euros. (http://www.leibniz-association.eu)

Dr. Kristin Beck | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>