Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Theory of the sun's role in formation of the solar system questioned

05.09.2008
Results critical to interpretation of GENESIS spacecraft samples of the sun

A strange mix of oxygen found in a stony meteorite that exploded over Pueblito de Allende, Mexico nearly 40 years ago has puzzled scientists ever since. Small flecks of minerals lodged in the stone and thought to date from the beginning of the solar system have a pattern of oxygen types, or isotopes, that differs from those found in all known planetary rocks, including those from Earth, its Moon and meteorites from Mars.

Now scientists from UC San Diego and Lawrence Berkeley National Laboratory have eliminated one model proposed to explain the anomaly: the idea that light from the early Sun could have shifted the balance of oxygen isotopes in molecules that formed after it turned on. When they beamed light through carbon monoxide gas to form carbon dioxide, the balance of oxygen isotopes in the new molecules failed to shift in ways predicted by the model they report in the September 5 issue of Science.

"It's solar system forensics. We're understanding a little about how it got made," said Mark Thiemens, Dean of the Division of Physical Sciences and a professor of chemistry and biochemistry at UC San Diego, who directed the project. The results pare down the potential explanations for how gas and dust coalesced to form the planets and will help this team and others interpret samples of the solar wind returned by NASA's Genesis spacecraft.

Atomic Shield

Scientists think the early Sun emitted intense far-ultraviolet light. Light energy at these very short wavelengths will dislodge oxygen atoms from molecules, freeing them to hook up with others in new combinations. In the process, the oxygen atoms absorb some of the energy.

This is how gases became dust and then larger minerals that collided and continued to build to form the planets. Oxygen, the most abundant element in the solar system, is a player in almost all of these reactions.

Each oxygen isotope responds to a unique set of light wavelengths. An abundance of a particular oxygen isotope within in a cloud of gas molecules will quench the light at its preferred wavelengths, shielding gas molecules farther along the light's path. Other wavelengths, including those that dislodge different oxygen isotopes, will continue unimpeded, favoring the inclusion of these rarer isotopes in new molecules.

The balance of oxygen isotopes found in the Allende meteorite is tipped toward the most abundant one, 16O. Planetary rocks have relatively more rarer heavier oxygen isotopes, as though rare isotopes were preferred as the planets formed.

Photo Effect

"We decided to directly test this idea that photoshielding could change the isotope ratios," said Subrata Chakraborty, a postdoctoral fellow at UC San Diego and first author of the paper.

The team focused an intense beam of far-ultraviolet light generated by the Lawrence Berkeley National Laboratory's Advanced Light Source into a tube filled with carbon monoxide gas. The light knocked some of the oxygen atoms free, allowing them to recombine with other carbon monoxide molecules to form carbon dioxide. Chakraborty then collected and analyzed the carbon dioxide to determine the balance of oxygen isotopes in the new molecules.

By precisely controlling the wavelength of the light, the scientists were able to set up conditions that should have resulted in oxygen isotope mixes that matched either those found on Earth or in the Allende meteorite.

Wavelengths known to be absorbed by 16O should result in carbon dioxide molecules enriched with the heavier forms of oxygen. They tested two of these wavelengths: one enriched the mix; the other did not.

Wavelengths not absorbed by 16O should result in a mix that matched that found in the Allende meteorite. Again, of the two the team tested, one did and one did not. "Some process is altering the mix, but it can't be photoshielding," Chakraborty said.

Original Mix

Samples returned by the GENESIS spacecraft will have to be interpreted in light of these results, Thiemens said. By analyzing samples of the Sun's outer atmosphere captured from the solar wind, the mission aims to determine the original composition of the solar nebula, the swirl of dust and gas that formed the solar system. Measurements by Thiemen's research group and others will help to resolve the chemical mismatch between the meteorite inclusions and planetary rocks.

Several other models have been proposed to explain the anomaly--including the idea that an exploding star could have blasted in an extra dose of 16O--only to have been discarded when experimental evidence showed them to be unlikely.

The only one left standing, according to Thiemens, is an idea called molecular symmetry that says an atom flanked by two oxygen isotopes is more likely to become a stable molecule if the two isotopes are mismatched. This quieter process would also favor the formation of molecules that included rarer oxygen isotopes.

"There's no violence," Thiemens said. "It doesn't require a star blowing up or turning on to cast a nebula-wide shadow. It's symmetry."

Susan Brown | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Earth Sciences:

nachricht Rare Earth Elements in Norwegian Fjords?
06.08.2020 | Jacobs University Bremen gGmbH

nachricht Rock debris protects glaciers from climate change more than previously known
05.08.2020 | Northumbria University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>