Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Theory of the sun's role in formation of the solar system questioned

05.09.2008
Results critical to interpretation of GENESIS spacecraft samples of the sun

A strange mix of oxygen found in a stony meteorite that exploded over Pueblito de Allende, Mexico nearly 40 years ago has puzzled scientists ever since. Small flecks of minerals lodged in the stone and thought to date from the beginning of the solar system have a pattern of oxygen types, or isotopes, that differs from those found in all known planetary rocks, including those from Earth, its Moon and meteorites from Mars.

Now scientists from UC San Diego and Lawrence Berkeley National Laboratory have eliminated one model proposed to explain the anomaly: the idea that light from the early Sun could have shifted the balance of oxygen isotopes in molecules that formed after it turned on. When they beamed light through carbon monoxide gas to form carbon dioxide, the balance of oxygen isotopes in the new molecules failed to shift in ways predicted by the model they report in the September 5 issue of Science.

"It's solar system forensics. We're understanding a little about how it got made," said Mark Thiemens, Dean of the Division of Physical Sciences and a professor of chemistry and biochemistry at UC San Diego, who directed the project. The results pare down the potential explanations for how gas and dust coalesced to form the planets and will help this team and others interpret samples of the solar wind returned by NASA's Genesis spacecraft.

Atomic Shield

Scientists think the early Sun emitted intense far-ultraviolet light. Light energy at these very short wavelengths will dislodge oxygen atoms from molecules, freeing them to hook up with others in new combinations. In the process, the oxygen atoms absorb some of the energy.

This is how gases became dust and then larger minerals that collided and continued to build to form the planets. Oxygen, the most abundant element in the solar system, is a player in almost all of these reactions.

Each oxygen isotope responds to a unique set of light wavelengths. An abundance of a particular oxygen isotope within in a cloud of gas molecules will quench the light at its preferred wavelengths, shielding gas molecules farther along the light's path. Other wavelengths, including those that dislodge different oxygen isotopes, will continue unimpeded, favoring the inclusion of these rarer isotopes in new molecules.

The balance of oxygen isotopes found in the Allende meteorite is tipped toward the most abundant one, 16O. Planetary rocks have relatively more rarer heavier oxygen isotopes, as though rare isotopes were preferred as the planets formed.

Photo Effect

"We decided to directly test this idea that photoshielding could change the isotope ratios," said Subrata Chakraborty, a postdoctoral fellow at UC San Diego and first author of the paper.

The team focused an intense beam of far-ultraviolet light generated by the Lawrence Berkeley National Laboratory's Advanced Light Source into a tube filled with carbon monoxide gas. The light knocked some of the oxygen atoms free, allowing them to recombine with other carbon monoxide molecules to form carbon dioxide. Chakraborty then collected and analyzed the carbon dioxide to determine the balance of oxygen isotopes in the new molecules.

By precisely controlling the wavelength of the light, the scientists were able to set up conditions that should have resulted in oxygen isotope mixes that matched either those found on Earth or in the Allende meteorite.

Wavelengths known to be absorbed by 16O should result in carbon dioxide molecules enriched with the heavier forms of oxygen. They tested two of these wavelengths: one enriched the mix; the other did not.

Wavelengths not absorbed by 16O should result in a mix that matched that found in the Allende meteorite. Again, of the two the team tested, one did and one did not. "Some process is altering the mix, but it can't be photoshielding," Chakraborty said.

Original Mix

Samples returned by the GENESIS spacecraft will have to be interpreted in light of these results, Thiemens said. By analyzing samples of the Sun's outer atmosphere captured from the solar wind, the mission aims to determine the original composition of the solar nebula, the swirl of dust and gas that formed the solar system. Measurements by Thiemen's research group and others will help to resolve the chemical mismatch between the meteorite inclusions and planetary rocks.

Several other models have been proposed to explain the anomaly--including the idea that an exploding star could have blasted in an extra dose of 16O--only to have been discarded when experimental evidence showed them to be unlikely.

The only one left standing, according to Thiemens, is an idea called molecular symmetry that says an atom flanked by two oxygen isotopes is more likely to become a stable molecule if the two isotopes are mismatched. This quieter process would also favor the formation of molecules that included rarer oxygen isotopes.

"There's no violence," Thiemens said. "It doesn't require a star blowing up or turning on to cast a nebula-wide shadow. It's symmetry."

Susan Brown | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Earth Sciences:

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

nachricht Earth's magnetic field measured using artificial stars at 90 kilometers altitude
14.11.2018 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

NIH scientists illuminate causes of hepatitis b virus-associated acute liver failure

14.11.2018 | Life Sciences

The unintended consequences of dams and reservoirs

14.11.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>