Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The volatile processes that shaped the Earth

28.09.2017

Oxford University scientists have shed new light on how the Earth was first formed.

Based on observations of newly-forming stars, scientists know that the solar system began as a disc of dust and gas surrounding the centrally-growing sun. The gas condensed to solids which accumulated into larger rocky bodies like asteroids and mini-planets. Over a period of 100 million years these mini-planets collided with one another and gradually accumulated into the planets we see today, including the Earth.


This is an image illustrating the late-stage building blocks of planetary formation (planetessimals and proto-planets) and the extensive volatile degassing that took place.

Credit: Ashley Norris, Oxford University

Although it is widely understood that Earth was formed gradually, from much smaller bodies, many of the processes involved in shaping our growing planet are less clear.

In a new study featured on the cover of the latest edition of Nature, researchers from the University of Oxford's Department of Earth Sciences untangle some of these processes, revealing that the mini-planets added to Earth had previously undergone melting and evaporation. They also address another scientific conundrum: the Earth's depletion in many economically important chemical elements.

It is well known that the Earth is strongly depleted, relative to the solar system as a whole, in those elements which condensed from the early gas disc at temperatures less than 1000°C (for example, lead, zinc, copper, silver, bismuth, and tin).

The conventional explanation is that the Earth grew without these volatile elements and small amounts of an asteroidal-type body were added later. This idea cannot, however, explain the "over abundance" of several other elements - notably, indium, which is now used in semiconductor technologies, as well as TV and computer screens.

Postgraduate student Ashley Norris and Bernard Wood, Professor of Mineralogy at Oxford's Department of Earth Sciences, set out to uncover the reasons behind the pattern of depletion of these volatile elements on Earth and for the "overabundance" of indium.

They constructed a furnace in which they controlled the temperature and atmosphere to simulate the low oxidation state of the very early Earth and planetesimals. In a particular series of experiments they melted rocks at 1300°C in oxygen-poor conditions and determined how the different volatile elements were evaporated from the molten lava.

During the experiments each of the elements of interest evaporated by different amounts. The lava samples were then rapidly cooled and the patterns of element loss determined by chemical analysis. The analyses revealed that the relative losses (volatilities) measured in the molten lava experiments agree very closely with the pattern of depletion observed in the Earth. In particular, indium volatility agrees exactly with its observed abundance in the Earth - its abundance, turns out not to be an anomaly.

Professor Bernard Wood said: 'Our experiments indicate that the pattern of volatile element depletion in the Earth was established by reaction between molten rock and an oxygen-poor atmosphere. These reactions may have occurred on the early-formed planetesimals which were accreted to Earth or possibly during the giant impact which formed the moon and which is believed to have caused large-scale melting of our planet.'

Having focused their original experiments on 13 key elements, the team are in the process of looking at how other elements, such as chlorine and iodine, behave under the same conditions.

Ashley Norris said: 'Our work shows that interpretation of volatile depletion patterns in the terrestrial planets needs to focus on experimental measurement of element volatillities.'

###

Notes to editors:

The full citation for the paper is 'Earth's volatile contents established by melting and vaporisation' and features in the September 28 2017 edition of Nature.

This web link will be active from 1:00 PM EST / 6:00 pm BST on Wednesday 27 September: DOI - 10.1038/nature23645

For further information please contact Lanisha Butterfield, Media Relations Manager on lanisha.butterfield@admin.ox.ac.uk or call 01865 280528

Media Contact

Lanisha Butterfield
lanisha.butterfield@admin.ox.ac.uk
01-865-280-528

 @UniofOxford

http://www.ox.ac.uk/ 

Lanisha Butterfield | EurekAlert!

More articles from Earth Sciences:

nachricht Ten-year anniversary of the Neumayer Station III
18.01.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht The pace at which the world’s permafrost soils are warming
16.01.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>