Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The shield is crumbling

09.02.2016

Over the past 20 years, many ice shelves in Antarctica have shrunk and some have disappeared entirely. This has resulted in a significant acceleration of many Antarctic glaciers, contributing to rising sea levels. Dr. Johannes Fürst from the Institute of Geography at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) has used a complex model to show for the first time at what point the “buttressing” role of ice shelves is impaired due to their decline. The results of Dr. Fürst's research, carried out in collaboration with Antarctic experts from Laboratoire de Glaciologie et Géophysique de l'Environnement in Grenoble, France, have been published in the journal Nature Climate Change*.

Antarctica is surrounded by huge ice shelves. The largest of these, the Ross Ice Shelf, has an area comparable to the size of Spain. These ice shelves are several hundred metres thick and float on the surface of the sea, towering above the water.


Calving front of the Fleming Glacier which fed into the Wordie Ice Shelf before it collapsed in the late 1980s. One can discern the high calving activity characterising the post-collapse period.

Photo: Matthias Braun

They are firmly linked to glaciers and ice streams on mainland Antarctica. These ice shelves are naturally fed by upstream inflow from tributary glaciers which push the floating ice seawards. Away from the mainland, at the seaward fronts of these ice shelves, ice breaks off as vast icebergs which drift away. This loss of ice is usually compensated for by land ice flowing in to replace it. This natural balance prevailed for thousands of years.

Ice-shelf retreat since 1995

However, over the past 20 years, researchers observed the progressive retreat and break-up of ice shelves on the Antarctic Peninsula. In 1995, Larsen A Ice Shelf collapsed completely removing the ice-cover from an area the size of Berlin. Seven years later, the much larger Larsen B Ice Shelf broke apart. This disintegration had hardly any immediate effect on sea levels as the lost ice was already afloat.

However, upstream tributary glaciers flowing towards the ocean accelerated by up to eight times after the break-up events on Larsen A and B. 'In contrast to the situation in Greenland, the loss of inland ice in West Antarctica is not caused by melting. It is much too cold for that to happen,' Johannes Fürst explains. 'The decrease is due to the glaciers there flowing into the sea at a faster rate than 20 years ago. This is what we call dynamic ice loss.'

Long-term sea-level rise

If all the ice shelves surrounding Antarctica were to collapse, this would result in rapid dynamic loss of inland ice, which would entail an elevated Antarctic contribution to sea-level rise for decades to come. Originally working at the LGGE in Grenoble, Johannes Fürst has now spent several years investigating how the presence of ice shelves exerts control on the upstream glacier dynamics. ‘As ice shelves continuously lose ice by calving, it is essential to known how far the recession of ice shelves may progress before the buttressing potential is reduced,' he says.

The West-Antarctic underbelly

For the whole of Antarctica, ice velocity data inferred from satellite images, including images of the European Space Agency (ESA), and airborne observations on ice thickness were analysed by Fürst, using an Elmer/Ice flow model developed in a collaborative effort between France (LGGE) and Finland (CSC). This enabled him to calculate that about 13 per cent of the total ice-shelf area contains so-called passive shelf ice. 'Passive shelf ice is the part of the floating ice body which provides no additional buttressing,' he explains.

'It is this portion which, when lost by calving, will not trigger an instant velocity increase.' His analysis reveals contrasting results across the continent. Along the coast of Queen Maud Land, ice shelves still have a relatively large and ‘healthy’ portion of passive ice. They are thus considered rather stable, for now. In the Bellingshausen and Amundsen Seas, this portion is much smaller. For some ice shelves, it is already almost absent.

'We expect that further ice-shelf retreat there will instantly produce dynamic changes, which may well give rise to increased ice outflow from the mainland,' Fürst explains. 'This is worrying because it is in this region that we have observed the highest rates of ice-shelf thinning over the past two decades and dynamic ice loss in the inland areas upstream.'

*Nature Climate Change: The safety band of Antarctic ice shelves, Johannes Jakob Fürst, Gaël Durand, Fabien Gillet-Chaulet, Laure Tavard, Melanie Rankl, Matthias Braun and Olivier Gagliardini. DOI: http://dx.doi.org/10.1038/NCLIMATE2912

Contact:
Dr. Johannes Fürst
Phone: +49 9131 8526680
johannes.fuerst@fau.de

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft
Further information:
http://www.fau.de/

More articles from Earth Sciences:

nachricht Atmospheric pressure impacts greenhouse gas emissions from leaky oil and gas wells
21.10.2019 | University of British Columbia

nachricht Strong storms generating earthquake-like seismic activity
16.10.2019 | Florida State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Phagocytes versus killer cells - A closer look into the tumour tissue

21.10.2019 | Life Sciences

A new stable form of plutonium discovered at the ESRF

21.10.2019 | Physics and Astronomy

Candidate Ebola vaccine still effective when highly diluted, macaque study finds

21.10.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>