Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Greenland Ice Sheet: Now in HD

22.12.2014

New software yields highest-resolution large-scale maps of polar ice

The Greenland Ice Sheet is ready for its close-up.


Kuparuk Watershed, Alaska

Braided Streams & Geology

The highest-resolution satellite images ever taken of that region are making their debut. And while each individual pixel represents only one moment in time, taken together they show the ice sheet as a kind of living body—flowing, crumbling and melting out to sea.

The Ohio State University has partnered with the Polar Geospatial Center at the University of Minnesota to turn images captured by DigitalGlobe’s Worldview-1 and 2 satellites into publicly available elevation maps that researchers can use to track the ice.

Ian Howat, associate professor of earth sciences at Ohio State, presented the project’s first data release in a poster session at the American Geophysical Union (AGU) meeting on Dec. 18, 2014.*

He called researchers’ access to DigitalGlobe’s imagery “one of the biggest breakthroughs for earth science satellite capabilities in decades,” adding that “it’s only been a few years since we’ve gotten access to really high-resolution imagery from government agencies, and we’re already discovering new things about the ice sheet.”

The imagery starts out at a resolution of about 0.5 meters. The researchers then turn it into digital elevation maps with a resolution of 2 meters.

With hundreds of terabytes of polar data already collected and additional surface area equivalent to the state of Missouri being collected every day, the researchers are steadily processing it all with new Ohio State software called SETSM (for Surface Extraction from TIN-based Search Minimization). Ohio State research associate Myoung-Jong Noh created the software, which builds 1-gigabyte “tiles” representing regions 7 kilometers on a side and assembles them into mosaics depicting land, sea and ice elevation.

Each tile is extracted from a pair of images acquired of the same region, but about 45 seconds apart. SETSM combines the two displaced images into a coherent whole, as our brain does when it combines images from our two eyes. SETSM uses the Worldview satellites’ sensitivity to a very wide band of the electromagnetic spectrum to show things that our eyes alone couldn’t see, including tiny changes in elevation.

As an example, Howat pointed to the portion of the mosaic showing Jakobshavn Glacier, the fastest-flowing glacier in the Greenland Ice Sheet. Icebergs that have calved off the edge of the glacier are visible floating out to sea—but so are cracks hundreds of kilometers inland from Jakobshavn, on what would otherwise be a flat expanse of ice.

The winding, parallel cracks, which resemble ridges on a fingerprint, are signs that the ice is accelerating, Howat explained. As the ice flows faster and approaches the sea, the surface gets stretched out and cracks open. Over time, the cracks widen. The situation is similar to cars on a highway, he explained: Cars may be bunched up when they first enter the highway from an on-ramp, but they gradually spread apart as they accelerate to highway speeds.

Any research that relies on measuring changes in the Earth’s surface, including studies of volcanoes and coastal erosion, would benefit from elevation data produced by the SETSM software, Howat said. Applications for SETSM outside of earth science include computer vision, astronomy and national security—any job for which very large amounts of terrain are mapped at high resolution.

The mosaics debuting at AGU show southwest Greenland and some of the North Slope of Alaska. So far, the Ohio State team has finished processing images from about one quarter of the Greenland Ice Sheet, representing a tiny portion of the data already stored at Minnesota, and about one year’s worth of work and computing for the research team.

The Greenland Survey, Asiaq, is already using SETSM to protect drinking water resources, where remote sensing specialist Eva Mätzler said it “strengthens the understanding of importance in reliable geographic data for the Greenlandic government and people.” Asiaq project manager Bo Naamansen added that the software “is the best news for several decades when it comes to mapping Greenland and the Arctic.”

Paul Morin, director the Polar Geospatial Center, offered more superlatives: He said that the work done with SETSM is truly revolutionary. “We are no longer limited by remote sensing data when producing elevation data at the poles,” Morin said. “Noh and Howat have shown that we’re really only limited by high-performance computing.”

The Worldview satellite data is collected by commercial imagery vendor DigitalGlobe and licensed for U.S. federal use by the National Geospatial-Intelligence Agency, which in turn provides it to the Polar Geospatial Center at the University of Minnesota. At any given time, a 30-terabyte data subset is being stored and processed at Ohio State via the Ohio Supercomputer Center (OSC) before returning to Minnesota for distribution via a publicly accessible website.

Of the many Ohio State projects that draw upon OSC resources, SETSM is one of the largest. The researchers hope to expand the project to NASA’s Pleiades supercomputer starting in 2015.

NASA funds this research, including the continued development of the SETSM software. The National Science Foundation Division of Polar Programs supports the map distribution through the Polar Geospatial Center. In addition, OSC provided a grant for computing resources.

Contact: Ian Howat, (614) 292-6641; Howat.4@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu
Images are available from the Polar Geospatial Center or from Pam Frost Gorder

Pamela Gorder | newswise
Further information:
http://www.osu.edu

Further reports about: Geospatial Greenland OSC Ohio Polar Sheet cracks ice sheet processing remote sensing satellite tiny

More articles from Earth Sciences:

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

nachricht Drones survey African wildlife
11.07.2018 | Schweizerischer Nationalfonds SNF

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

New players, standardization and digitalization for more rail freight transport

16.07.2018 | Transportation and Logistics

Researchers discover natural product that could lead to new class of commercial herbicide

16.07.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>