Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The ebb and flow of Greenland’s glaciers

02.06.2015

New study could improve understanding of Greenland’s contribution to sea-level rise

In northwestern Greenland, glaciers flow from the main ice sheet to the ocean in see-sawing seasonal patterns. The ice generally flows faster in the summer than in winter, and the ends of glaciers, jutting out into the ocean, also advance and retreat with the seasons.


Icebergs choke the fjord where Jakobshavn glacier flows into the sea off western Greenland. A new analysis shows that the mechanisms that drive the seasonal ebb and flow of some Greenland glaciers are different from those driving longer-term trends like overall retreat of glaciers, and faster flows. Lead author of the Journal of Geophysical Research paper, CU-Boulder’s Twila Moon, said she hopes it will help scientists better anticipate how a warming Greenland will contribute to sea level rise.

Credit: Ian Joughin, University of Washington.

Now, a new analysis shows some important connections between these seasonal patterns, sea ice cover and longer-term trends. Glaciologists hope the findings, accepted for publication in the June issue of the American Geophysical Union’s Journal of Geophysical Research-Earth Surface and available online now, will help them better anticipate how a warming Greenland will contribute to sea level rise.

“Rising sea level can be hard on coastal communities, with higher storm surges, greater flooding and saltwater encroachment on freshwater,” said lead author Twila Moon, a researcher at the National Snow and Ice Data Center (NSIDC). NSIDC is part of the Cooperative Institute for Research in Environmental Sciences (CIRES) at the University of Colorado Boulder.

“We know that sea level will go up in the future,” Moon said. “The challenge is to understand how quickly it will rise, and one element of that is better understanding how Greenland glaciers behave.”

Moon and colleagues from the University of Washington focused on 16 glaciers in northwest Greenland, collecting detailed information on glacier speed, terminus position (the “end” of the glacier in the ocean) and sea ice conditions, during the years 2009-2014.

Sea ice had an important influence on the glaciers: When the waters in front of the glacier were completely covered by sea ice, the ends of the glaciers often advanced out away from land; icebergs that might otherwise have broken off and floated away stayed attached. When sea ice broke up in the spring, the ends of the glaciers usually quickly retreated back toward land as icebergs broke away.

By contrast, seasonal swings in glacier speed had little to do with sea ice conditions or glacier terminus location. Rather, the speed (velocity) of ice flow is likely responding to changes in the surface melt on top of the ice sheet and the movement of meltwater through and under the ice sheet.

Over the longer-term, however, Moon and her colleagues found a tight relationship between the speed of glaciers and terminus location. When sea ice levels were especially low and glaciers’ toes (termini) retreated more than normal and then didn’t re-advance, the glaciers sped up, moving ice toward the sea more quickly. While low sea ice is likely not the full cause of the changes, it may be a visible indication of other processes, such as subsurface ice melt, that also affect terminus retreat, Moon said.

It’s important to recognize that the mechanisms driving seasonal glacier changes—in northwestern Greenland and around the world—are not necessarily the same ones driving longer-term trends, Moon said. Knowing the differences may help researchers better anticipate the impact of anomalously low sea ice years, for example.

“We do know we’re going to see sea ice reduction in this area, and it’s possible we can begin to estimate how that may affect glacier velocities,” Moon said. It’s also possible, she said, that researchers and communities interested in long-term glacial changes—the kind that affect sea levels—may not need to focus as much on seasonal advance and retreat of the rivers of ice.

“It may be that we need to instead pay more attention to these out-of-bounds events, these anomalous years of very low sea ice or very high melt that likely have the greatest influence on longer-term trends.”

This research was funded by NASA and the National Science Foundation.

The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing more than 60,000 members in 139 countries. Join the conversation on Facebook, Twitter, YouTube, and our other social media channels.

Notes for Journalists
Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of the article by clicking on this link: http://onlinelibrary.wiley.com/doi/10.1002/2015JF003494/full?campaign=wlytk-41855.5282060185

Or, you may order a copy of the final paper by emailing your request to Nanci Bompey at nbompey@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the papers nor this press release is under embargo.
Title
“Seasonal to multiyear variability of glacier surface velocity, terminus position, and sea ice/ice mélange in northwest Greenland”

Authors:
Twila Moon: Earth and Space Sciences and Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA; now at National Snow and Ice Data Center and Cooperative Institute for Research in Environmental Sciences at the University of Colorado – Boulder, USA;

Ian Joughin and Ben Smith: Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA.

Contact Information for the Authors:
Twila Moon: twila.moon@nsidc.org (Dr. Moon is in Greenland this week, available by email and by Skype)


AGU Contact:
Nanci Bompey
+1 (202) 777-7524
nbompey@agu.org

CIRES Contact:
Katy Human
+1 (303) 735-0196
Kathleen.human@colorado.edu

Nanci Bompey | American Geophysical Union
Further information:
http://news.agu.org/press-release/the-ebb-and-flow-of-greenlands-glaciers/

More articles from Earth Sciences:

nachricht The pace at which the world’s permafrost soils are warming
16.01.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Using satellites to measure rates of ice mass loss in glaciers
16.01.2019 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

A new twist on a mesmerizing story

17.01.2019 | Physics and Astronomy

Brilliant glow of paint-on semiconductors comes from ornate quantum physics

17.01.2019 | Materials Sciences

Drones shown to make traffic crash site assessments safer, faster and more accurate

17.01.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>