Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Antarctica Factor: model uncertainties reveal upcoming sea-level risk

14.02.2020

Sea-level rise due to ice loss in Antarctica could become a major risk for coastal protection even in the near term, scientists say. Within this century already, due to Antarctica alone global sea-level might rise up to three times as much as it did in the last century. This is a finding of an exceptionally comprehensive comparison of state-of-the-art computer models from around the world.

“The ‘Antarctica Factor’ turns out to be the greatest risk, and also the greatest uncertainty, for sea-levels around the globe,” says lead-author Anders Levermann from the Potsdam Institute of Climate Impact Research (PIK) and Columbia University’s LDEO in New York.


“While we saw about 19 centimeter of sea-level rise in the past 100 years, Antarctic ice-loss could lead to up to 58 centimeter within this century. Coastal planning cannot merely rely on the best guess. It requires a risk analysis. Our study provides exactly that: The sea-level contribution of Antarctica is very likely not going to be more than 58 centimeters.”

Thermal expansion of the ocean water under global warming and melting of mountain glaciers, which to date have been the most important factors for sea-level rise, will come on top of the contribution from Antarctic ice-loss.

The overall sea-level rise risk is thus even bigger, yet the ‘Antarctica Factor’ is about to become the most important one, according to the study now published in the journal Earth System Dynamics of the European Geosciences Union (EGU).

Large range of estimates makes the results very robust

The range of sea-level rise estimates from the ‘Antarctica Factor’ provided by the scientists is rather large. Assuming that humanity keeps on emitting greenhouse gases as before, the range the scientists call “very likely” to capture the future is between 6 and 58 centimeters for this century.

If greenhouse gas emissions were to be reduced rapidly, it is between 4 and 37 centimeters. Importantly, the difference between a scenario of business-as-usual and a scenario of emissions reductions becomes substantially greater on longer time-scales, hence farther in the future.

The researchers accounted for a number of uncertainties in the computations, from the atmospheric warming response to carbon emissions to oceanic heat transport to the Southern ocean.

16 ice sheet modeling groups comprised of 36 researchers from 27 institutes contributed to the new study, which was coordinated by PIK. A similar study six years earlier had to rely on the output of only five ice sheet models. This development reflects the increasing importance of research on the Antarctic ice sheet.

“Risks for coastal metropolises from New York to Mumbai, Hamburg to Shanghai”

“The more computer simulation models we use, all of them with slightly different dynamic representations of the Antarctic ice sheet, the wider the range of results that we yield – but also the more robust the insights that we gain,” says co-author Sophie Nowicki of the NASA Goddard Space Flight Center and lead author of the Intergovernmental Panel on Climate Change who led the overarching ice sheet model intercomparison project, ISMIP6.

“There are still large uncertainties, but we are constantly improving our understanding of the largest ice sheet on Earth. Comparing model outputs is a forceful tool to provide society with the necessary information for rational decisions.”

Over the long-term, the Antarctic ice sheet has the potential to raise sea-level by tens of meters. “What we know for certain,” says Levermann, “is that not stopping to burn coal, oil and gas will drive up the risks for coastal metropolises from New York to Mumbai, Hamburg or Shanghai.”

Article: Levermann, A., Winkelmann, R., Albrecht, T., Goelzer, H., Golledge, N. R., Greve, R., Huybrechts, P., Jordan, J., Leguy, G., Martin, D., Morlighem, M., Pattyn, F., Pollard, D., Quiquet, A., Rodehacke, C., Seroussi, H., Sutter, J., Zhang, T., Van Breedam, J., Calov, R., DeConto, R., Dumas, C., Garbe, J., Gudmundsson, G. H., Hoffman, M. J., Humbert, A., Kleiner, T., Lipscomb, W. H., Meinshausen, M., Ng, E., Nowicki, S. M. J., Perego, M., Price, S. F., Saito, F., Schlegel, N.-J., Sun, S., and van de Wal, R. S. W. (2020): Projecting Antarctica's contribution to future sea-level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2), Earth Syst. Dynam., 11, 35–76, https://doi.org/10.5194/esd-11-35-2020.

Weblink to the article once it is published:
https://www.earth-syst-dynam.net/11/35/2020/

Wissenschaftliche Ansprechpartner:

PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

www.pik-potsdam.de

Originalpublikation:

https://doi.org/10.5194/esd-11-35-2020

Weitere Informationen:

https://www.earth-syst-dynam.net/11/35/2020/

Jonas Viering | Potsdam-Institut für Klimafolgenforschung
Further information:
https://www.pik-potsdam.de/news/press-releases/the-antarctica-factor-model-uncertainties-reveal-upcoming-sea-level-risk?set_language=en

More articles from Earth Sciences:

nachricht Flooding stunted 2019 cropland growing season, resulting in more atmospheric CO2
01.04.2020 | California Institute of Technology

nachricht The seafloor of Fram Strait is a sink for microplastic from the Arctic and North Atlantic Ocean
30.03.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

Hubble finds best evidence for elusive mid-size black hole

01.04.2020 | Physics and Astronomy

Flooding stunted 2019 cropland growing season, resulting in more atmospheric CO2

01.04.2020 | Earth Sciences

To tune up your quantum computer, better call an AI mechanic

01.04.2020 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>