Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Texas surprise: When trees, shrubs replace grasses, water flows can increase

05.03.2010
Contrary to prevailing wisdom, the takeover of rangelands by trees and shrubs can increase flows of streams and recharging of groundwater, a new study shows. The soon-to-be published analysis of many decades of historical records for four central Texas river basins challenges widespread perceptions that woody plants have the opposite effects on streams and aquifers.

The researchers found evidence that, from around 1890 to 1960, overgrazing and resultant soil degradation, not encroachment by woody plants, were the main culprits behind reductions in streamflows and recharging of groundwater in the semiarid central region known as the Edwards Plateau. The region is the primary water source for the Edwards Aquifer, which supplies the city of San Antonio and numerous smaller municipalities.

Large numbers of cattle, sheep, and goats that continuously grazed the area's rangelands led to widespread soil degradation, partly hindering the amount of water recharging springs and groundwater, says hydrologist Bradford Wilcox of Texas A&M University and Texas AgriLife Research, in College Station, Texas.

He and Yun Huang, a former graduate student at Texas A&M, will publish their results in an upcoming issue of Geophysical Research Letters, a journal of the American Geophysical Union (AGU).

From 1880 to 1900, there were more animals on the land than it could support, Wilcox says. For a short period of time near the turn of the last century, stocking rates were 10 times greater than current levels. Since the late 1900s, however, as fewer cattle and other livestock were used on the land for agricultural production, the region has gone through revitalization.

"As a result, these landscapes are recovering, but they've also converted to woody plants," Wilcox notes. "We're also seeing large-scale increases in the amount of spring flows. This is opposite of what everybody is presuming -[which is that] the trees are there sucking up all of this water. The trees are actually allowing the water to infiltrate."

In fact, spring flows are twice as high as they were prior to 1950, he adds.

"This area was basically converted from grassland to shrubland after many years of heavy livestock grazing. What people have forgotten is that in the time period between healthy grasslands and the current shrublands, there was an extended period when the land was quite degraded. Subsequent to 1960, livestock numbers have declined and the landscape has recovered although there are now more cedar than in the past," Wilcox explains.

In the new study, he and Huang, who is now with LBG Guyton, in Austin, assess the hydrological changes that have taken place in the region as patterns of land use and vegetation changed. To do so, the researchers analyzed annual measurements dating back to 1925, or earlier, for the Nueces, Frio, Guadulupe, and Llano rivers. The measurements provide an annual record of 'baseflow,' or flow derived from groundwater only (i.e. springs) and of 'stormflow' or flow resulting from rainfall, for those rivers.

The scientists report that the total flow in the three of the four rivers has gone up in recent decades, "largely because contributions in the form of baseflow have increased." The baseflow of the fourth river also increased, although its total flow did not. Yet, rainfall in the region hasn't changed significantly.

Although the prevailing wisdom has been that proliferation of woody plants stifles infiltration of water back into aquifers, the new results suggest otherwise.

Moreover, the results have implications beyond the Edwards Plateau, Wilcox and Huang maintain, applying in general to "semiarid and subhumid rangelands in which springs and intermittent or perennial streams are found." For such regions, the transition to woody plants appears to be good news for regional water resources.

Images:
Photos of rangeland on the Edwards Plateau in degraded and recovering states, plus a map of the four studied river basins (and captions) are available for download with AGU's posted press release at:

http://www.agu.org/news/press/pr_archives/2010/2010-06.shtml

Title:
"Woody Plant Encroachment Paradox: Rivers Rebound as Degraded Grasslands Convert to Woodlands"
Authors:
Bradford P. Wilcox and Yun Huang, Ecosystem Science and Management, Texas A&M University, College Station, Texas, USA.
Contact information for authors:
Brad Wilcox, Professor, Department of Ecosystem Science and Management, 979-458-1899, bwilcox@tamu.edu
AGU Contact:
Peter Weiss
+1 (202) 777 7507
pweiss@agu.org
Texas A&M Contact:
Blair Fannin
+1 (979) 845-2259
b-fannin@tamu.edu

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide
15.08.2018 | University of Washington

nachricht Algorithm provides early warning system for tracking groundwater contamination
14.08.2018 | DOE/Lawrence Berkeley National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>