Texas surprise: When trees, shrubs replace grasses, water flows can increase

The researchers found evidence that, from around 1890 to 1960, overgrazing and resultant soil degradation, not encroachment by woody plants, were the main culprits behind reductions in streamflows and recharging of groundwater in the semiarid central region known as the Edwards Plateau. The region is the primary water source for the Edwards Aquifer, which supplies the city of San Antonio and numerous smaller municipalities.

Large numbers of cattle, sheep, and goats that continuously grazed the area's rangelands led to widespread soil degradation, partly hindering the amount of water recharging springs and groundwater, says hydrologist Bradford Wilcox of Texas A&M University and Texas AgriLife Research, in College Station, Texas.

He and Yun Huang, a former graduate student at Texas A&M, will publish their results in an upcoming issue of Geophysical Research Letters, a journal of the American Geophysical Union (AGU).

From 1880 to 1900, there were more animals on the land than it could support, Wilcox says. For a short period of time near the turn of the last century, stocking rates were 10 times greater than current levels. Since the late 1900s, however, as fewer cattle and other livestock were used on the land for agricultural production, the region has gone through revitalization.

“As a result, these landscapes are recovering, but they've also converted to woody plants,” Wilcox notes. “We're also seeing large-scale increases in the amount of spring flows. This is opposite of what everybody is presuming -[which is that] the trees are there sucking up all of this water. The trees are actually allowing the water to infiltrate.”

In fact, spring flows are twice as high as they were prior to 1950, he adds.

“This area was basically converted from grassland to shrubland after many years of heavy livestock grazing. What people have forgotten is that in the time period between healthy grasslands and the current shrublands, there was an extended period when the land was quite degraded. Subsequent to 1960, livestock numbers have declined and the landscape has recovered although there are now more cedar than in the past,” Wilcox explains.

In the new study, he and Huang, who is now with LBG Guyton, in Austin, assess the hydrological changes that have taken place in the region as patterns of land use and vegetation changed. To do so, the researchers analyzed annual measurements dating back to 1925, or earlier, for the Nueces, Frio, Guadulupe, and Llano rivers. The measurements provide an annual record of 'baseflow,' or flow derived from groundwater only (i.e. springs) and of 'stormflow' or flow resulting from rainfall, for those rivers.

The scientists report that the total flow in the three of the four rivers has gone up in recent decades, “largely because contributions in the form of baseflow have increased.” The baseflow of the fourth river also increased, although its total flow did not. Yet, rainfall in the region hasn't changed significantly.

Although the prevailing wisdom has been that proliferation of woody plants stifles infiltration of water back into aquifers, the new results suggest otherwise.

Moreover, the results have implications beyond the Edwards Plateau, Wilcox and Huang maintain, applying in general to “semiarid and subhumid rangelands in which springs and intermittent or perennial streams are found.” For such regions, the transition to woody plants appears to be good news for regional water resources.

Images:
Photos of rangeland on the Edwards Plateau in degraded and recovering states, plus a map of the four studied river basins (and captions) are available for download with AGU's posted press release at:

http://www.agu.org/news/press/pr_archives/2010/2010-06.shtml

Title:
“Woody Plant Encroachment Paradox: Rivers Rebound as Degraded Grasslands Convert to Woodlands”
Authors:
Bradford P. Wilcox and Yun Huang, Ecosystem Science and Management, Texas A&M University, College Station, Texas, USA.
Contact information for authors:
Brad Wilcox, Professor, Department of Ecosystem Science and Management, 979-458-1899, bwilcox@tamu.edu
AGU Contact:
Peter Weiss
+1 (202) 777 7507
pweiss@agu.org
Texas A&M Contact:
Blair Fannin
+1 (979) 845-2259
b-fannin@tamu.edu

Media Contact

Peter Weiss American Geophysical Union

More Information:

http://www.agu.org

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors