Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Terrestrial biodiversity recovered faster after Permo-Triassic extinction than previously believed

10.10.2011
Results contradict several theories for cause of extinction

While the cause of the mass extinction that occurred between the Permian and Triassic periods is still uncertain, two University of Rhode Island researchers collected data that show that terrestrial biodiversity recovered much faster than previously thought, potentially contradicting several theories for the cause of the extinction.

David Fastovsky, URI professor of geosciences, and graduate student David Tarailo found that terrestrial biodiversity recovered in about 5 million years, compared to the 15- to 30-million year recovery period that earlier studies had estimated. The recovery period in the marine environment is believed to have taken 4 to 10 million years, about twice as long as the recovery period after most other mass extinctions.

The results of their research were presented today at the annual meeting of The Geological Society of America in Minneapolis.

"Our results suggest that the cause of the extinction didn't spill over as severely into the terrestrial realm as others have claimed," said Fastovsky. "There was still a terrestrial extinction, but its repercussions weren't more long term than those in the marine realm, and possibly less."

Since the URI study suggests that the terrestrial realm recovered at least as fast as the marine realm, it rules out those theories stating that the extinction, which took place about 251 million years ago, was caused by global events affecting both the marine and terrestrial environments equally.

The researchers compiled fossil faunal lists from the Moenkopi Formation in northeastern Arizona, which contains fossil vertebrates from the Middle Triassic, and compared them to faunas from the nearby Chinle Formation, containing Late Triassic fauna.

According to Tarailo and Fastovsky, if it took 30 million years for the terrestrial fauna to recover, then the older formation should have lower diversity than the younger one, because it would still be compromised by the conditions that caused the extinction. But they found the diversity to be comparable, meaning that the diversity recovered more rapidly than that.

"Some may argue that our results are just one data point in North America, but if North America is representative of the rest of the world, then our results apply to the entire world," Fastovsky said.

The researchers' next step is to expand their analysis to other fossil deposits around the world using the same techniques to test their results.

Todd McLeish | EurekAlert!
Further information:
http://www.uri.edu

More articles from Earth Sciences:

nachricht Volcanoes under pressure
18.11.2019 | Technical University of Munich (TUM)

nachricht New findings on the largest natural sulfur source in the atmosphere
18.11.2019 | Leibniz-Institut für Troposphärenforschung e. V.

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Scientists first to develop rapid cell division in marine sponges

21.11.2019 | Life Sciences

First detection of gamma-ray burst afterglow in very-high-energy gamma light

21.11.2019 | Physics and Astronomy

Research team discovers three supermassive black holes at the core of one galaxy

21.11.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>