Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Terrestrial biodiversity recovered faster after Permo-Triassic extinction than previously believed

10.10.2011
Results contradict several theories for cause of extinction

While the cause of the mass extinction that occurred between the Permian and Triassic periods is still uncertain, two University of Rhode Island researchers collected data that show that terrestrial biodiversity recovered much faster than previously thought, potentially contradicting several theories for the cause of the extinction.

David Fastovsky, URI professor of geosciences, and graduate student David Tarailo found that terrestrial biodiversity recovered in about 5 million years, compared to the 15- to 30-million year recovery period that earlier studies had estimated. The recovery period in the marine environment is believed to have taken 4 to 10 million years, about twice as long as the recovery period after most other mass extinctions.

The results of their research were presented today at the annual meeting of The Geological Society of America in Minneapolis.

"Our results suggest that the cause of the extinction didn't spill over as severely into the terrestrial realm as others have claimed," said Fastovsky. "There was still a terrestrial extinction, but its repercussions weren't more long term than those in the marine realm, and possibly less."

Since the URI study suggests that the terrestrial realm recovered at least as fast as the marine realm, it rules out those theories stating that the extinction, which took place about 251 million years ago, was caused by global events affecting both the marine and terrestrial environments equally.

The researchers compiled fossil faunal lists from the Moenkopi Formation in northeastern Arizona, which contains fossil vertebrates from the Middle Triassic, and compared them to faunas from the nearby Chinle Formation, containing Late Triassic fauna.

According to Tarailo and Fastovsky, if it took 30 million years for the terrestrial fauna to recover, then the older formation should have lower diversity than the younger one, because it would still be compromised by the conditions that caused the extinction. But they found the diversity to be comparable, meaning that the diversity recovered more rapidly than that.

"Some may argue that our results are just one data point in North America, but if North America is representative of the rest of the world, then our results apply to the entire world," Fastovsky said.

The researchers' next step is to expand their analysis to other fossil deposits around the world using the same techniques to test their results.

Todd McLeish | EurekAlert!
Further information:
http://www.uri.edu

More articles from Earth Sciences:

nachricht Cause for variability in Arctic sea ice clarified
14.05.2019 | Max-Planck-Institut für Meteorologie

nachricht Arctic rivers provide fingerprint of carbon release from thawing permafrost
08.05.2019 | Stockholm University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Discovering unusual structures from exception using big data and machine learning techniques

17.05.2019 | Materials Sciences

ALMA discovers aluminum around young star

17.05.2019 | Physics and Astronomy

A new iron-based superconductor stabilized by inter-block charger transfer

17.05.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>