Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tempest in a teapot: International team of scientists describes swirling natural phenomena

30.11.2010
Scientists can use cylinders as small as teapots to study the mechanisms involved in powerful hurricanes and other swirling natural phenomena.

The earth's atmosphere and its molten outer core have one thing in common: Both contain powerful, swirling vortices. While in the atmosphere these vortices include cyclones and hurricanes, in the outer core they are essential for the formation of the earth's magnetic field.

These phenomena in earth's interior and its atmosphere are both governed by the same natural mechanisms, according to experimental physicists at UC Santa Barbara working with a computation team in the Netherlands.

Using laboratory cylinders from 4 to 40 inches high, the team studied these underlying physical processes. The results are published in the journal Physical Review Letters.

"To study the atmosphere would be too complicated for our purposes," said Guenter Ahlers, senior author and professor of physics at UCSB. "Physicists like to take one ingredient of a complicated situation and study it in a quantitative way under ideal conditions." The research team, including first author Stephan Weiss, a postdoctoral fellow at UCSB, filled the laboratory cylinders with water, and heated the water from below and cooled it from above.

Due to that temperature difference, the warm fluid at the bottom plate rose, while the cold fluid at the top sank –– a phenomenon known as convection. In addition, the whole cylinder was rotated around its own axis; this had a strong influence on how the water flowed inside the cylinder. Rotation, such as the earth's rotation, is a key factor in the development of vortices. The temperature difference between the top and the bottom of the cylinder is another causal factor since it drives the flow in the first place. Finally, the relation of the diameter of the cylinder to the height is also significant.

Ahlers and his team discovered a new unexpected phenomenon that was not known before for turbulent flows like this. When spinning the container slowly enough, no vortices occurred at first. But, at a certain critical rotation speed, the flow structure changed. Vortices then occurred inside the flow and the warm fluid was transported faster from the bottom to the top than at lower rotation rates. "It is remarkable that this point exists," Ahlers said. "You must rotate at a certain speed to get to this critical point."

The rotation rate at which the first vortices appeared depended on the relation between the diameter and the height of the cylinder. For wide cylinders that are not very high, this transition appeared at relatively low rotation rates, while for narrow but high cylinders, the cylinder had to rotate relatively fast in order to produce vortices. Further, it was found that vortices do not exist very close to the sidewall of the cylinder. Instead they always stayed a certain distance away from it. That characteristic distance is called the "healing length."

"You can't go from nothing to something quickly," said Ahlers. "The change must occur over a characteristic length. We found that when you slow down to a smaller rotation rate, the healing length increases."

The authors showed that their experimental findings are in keeping with a theoretical model similar to the one first developed by Vitaly Lazarevich Ginzburg and Lev Landau in the theory of superconductivity. That same model is also applicable to other areas of physics such as pattern formation and critical phenomena. The model explains that the very existence of the transition from the state without vortices to the one with them is due to the presence of the sidewalls of the container. For a sample so wide (relative to its height) that the walls become unimportant, the vortices would start to form even for very slow rotation. The model makes it possible to describe the experimental discoveries, reported in the article, in precise mathematical language.

The other UCSB author is postdoctoral fellow Jin-Qiang Zhong. Additional authors are Richard J. A. M. Stevens and Detlef Lohse from the University of Twente and Herman J. H. Clercx from Eindhoven University of Science and Technology, both in the Netherlands.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Earth Sciences:

nachricht Huge stores of Arctic sea ice likely contributed to past climate cooling
21.02.2020 | University of Massachusetts Amherst

nachricht First research results on the "spectacular meteorite fall" of Flensburg
18.02.2020 | Westfälische Wilhelms-Universität Münster

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>