Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technique measures heat transport in the Earth's crust

01.04.2009
New spin on laser-flash analysis

Putting a new spin on an old technique, Anne M. Hofmeister, Ph.D., research professor of earth and planetary sciences in Arts & Sciences at Washington University in St. Louis, has revolutionized scientists' understanding of heat transport in the Earth's crust, the outermost solid shell of our planet.

Temperature is an important driver of many geological processes, including the generation of magmas (molten rocks) in the deepest parts of the Earth's crust, about 30 to 40 kilometers below the surface. Yet, until recently, temperatures deep inside the Earth's crust were uncertain, mainly because of difficulties associated with measuring thermal conductivity, or how much heat is flowing through the rocks that compose the crust.

In conventional methods of measuring thermal conductivity, measurement errors arise as the temperature of a rock nears its melting point. At such high temperatures, heat is not just transported from atom to atom by vibrations, but also by radiation (light). Since conventional methods cannot separate heat flow carried by vibrations from that associated with radiation, most measurements of how efficiently rocks transport heat at high temperatures have been overestimated. Because of this experimental uncertainty, scientists have assumed rock conductivity to be constant throughout the crust in order to make advances in models describing Earth's geological behavior.

Laser-flash analysis

Using an industrial laser that is typically used for steel welding, Hofmeister was able to circumvent the problems that plagued the older methods. Her facility at WUSTL is the first in the world to employ such a laser for geoscience research.

Her technique, laser-flash analysis, provides much more accurate data on heat transport through rocks than conventional methods. In laser-flash analysis, a rock sample is held at a given temperature and then subjected to a laser pulse of heat, allowing Hofmeister to measure the time it takes for the heat to go from one end of the sample to the other. This measurement of thermal diffusivity, or how fast heat flows through matter, is another way to describe the thermal conductivity of a rock. Since measuring heat transport in the crust itself is impossible, Hofmeister used the laser to measure heat transport in individual rock samples at various temperatures and then averaged across samples to represent the dynamics of the crust. In collaboration with researchers from the University of Missouri - Columbia, Peter I. Nabelek, Ph.D., professor of geological sciences, and Alan G. Whittington, Ph.D., assistant professor of geological sciences, Hofmeister applied her findings to explain geological phenomena observed in the environment.

The results, published in Nature on March 19, 2009, suggest that rock conductivity is not constant as was previously assumed, but instead varies strongly with temperature. Hofmeister explains, "Our analysis shows that rocks are more efficient at conducting heat at low temperatures than was previously thought and less efficient at high temperatures. The process of moving heat around really depends on the temperature of the rocks."

Hofmeister and her collaborators found that the conductivity of rocks in the lower crust, where the external temperature is very high, is much lower — by as much as 50 percent — than was predicted by conventional methods. These results also suggest that the lower crust may be much hotter than scientists previously recognized. Since rocks become better insulators and poorer conductors at high temperatures, the lower crust acts like a blanket over the heat-generating mantle, the layer underlying the crust.

Magma machine

The observation that the lower crust is a good thermal insulator has broad implications for scientists' understanding of fundamental geological processes such as magma production.

Hofmeister explains, "The new methods change our understanding of how heat is transported in geological environments. This pertains to where you find magmas, where you cook metamorphic rock, and where lavas form on ocean ridges."

She and her colleagues used the new temperature-dependent data to inform computer models that predict the consequences of burying and heating up rocks during mountain belt formation, as occurs in the present-day Himalayas. While prior models relied upon extraordinary processes such as high levels of radioactivity to explain melting of the crust in the Himalayas, Hofmeister and her collaborators' work suggests that the thermal properties of the rocks themselves might be sufficient to generate magmas.

In particular, they find that the strain heating, or friction, caused by mountain belt formation can trigger crustal melting. Because the lower crust is such a good thermal insulator, strain heating is much faster, more efficient, and more self-perpetuating than previously recognized.

"The melt is more insulating than the rock," explains Hofmeister, "Once you get rocks melting, the thermal diffusivity goes down, which makes it harder to cool the rocks. They stay hot longer and there's the potential for more melting."

According to Hofmeister, the Himalaya situation described in the study is probably not unique. Because heat transport is such an important driver, many models of Earth's geological behavior will need to be revisited in light of Hofmeister and her collaborators' findings.

These advances bring Hofmeister much closer to accomplishing what she describes as her life-long career objective. "The goal for most of my career has been to determine the temperature inside the earth. It's the time dependence, how long it takes heat to flow through rocks, that is going to tell us how hot the interior is," she says.

According to Hofmeister, understanding the temperature of the Earth's interior is the first step towards understanding the thermal evolution of the earth.

Anne Hofmeister | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Earth Sciences:

nachricht Live from the ocean research vessel Atlantis
13.12.2018 | National Science Foundation

nachricht NSF-supported scientists present new research results on Earth's critical zone
13.12.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

Collagen nanofibrils in mammalian tissues get stronger with exercise

14.12.2018 | Health and Medicine

Protein involved in nematode stress response identified

14.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>