Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team advances understanding of the Greenland Ice Sheet’s meltwater channels

02.10.2014

An international research team’s field work is showing that, well, things are more complicated than we thought.

An international research team’s field work, drilling and measuring melt rates and ice sheet movement in Greenland is showing that things are, in fact, more complicated than we thought.


An international team of researchers deployed to western Greenland to study the melt rates of the Greenland Ice Sheet.

“Although the Greenland Ice Sheet initially speeds up each summer in its slow-motion race to the sea, the network of meltwater channels beneath the sheet is not necessarily forming the slushy racetrack that had been previously considered,” said Matthew Hoffman, a Los Alamos National Laboratory scientist on the project.

A high-profile paper appearing in Nature this week notes that observations of moulins (vertical conduits connecting water on top of the glacier down to the bed of the ice sheet) and boreholes in Greenland show that subglacial channels ameliorate the speedup caused by water delivery to the base of the ice sheet in the short term. By mid summer, however, the channels stabilize and are unable to grow any larger.

In a previous paper appearing in Science, researchers had posited that the undersheet channels were not even a consideration in Greenland, but as happens in the science world, more data fills in the complex mosaic of facts and clarifies the evolution of the meltwater flow rates over the seasons.

In reality, these two papers are not inconsistent - they are studying different places at different times - and they both are consistent in that channelization is less important than previously assumed, said Hoffman.

The Greenland Ice Sheet’s movement speeds up each summer as melt from the surface penetrates kilometer-thick ice through moulins, lubricating the bed of the ice sheet. Greater melt is predicted for Greenland in the future, but its impact on ice sheet flux and associated sea level rise is uncertain: direct observations of the subglacial drainage system are lacking and its evolution over the melt season is poorly understood.

“Everyone wants to know what’s happening under Greenland as it experiences more and more melt,” said study coauthor Ginny Catania, a research scientist at the institute and an associate professor in the University of Texas at Austin’s Jackson School of Geosciences. “This subglacial plumbing may or may not be critical for sea level rise in the next 100 years, but we don’t really know until we fully understand it.”

To resolve these unknowns, the research team drilled and instrumented 13 boreholes through 700-meter thick ice in west Greenland. There they performed the first combined  analysis of Greenland ice velocity and water pressure in moulins and boreholes, and they determined that moulin water pressure does not lower over the latter half of the melt season, indicating a limited role of high-efficiency channels in subglacial drainage.

Instead they found that boreholes monitor a hydraulically isolated region of the bed, but decreasing water pressure seen in some boreholes can explain the decreasing ice velocity seen over the melt season.

“Like loosening the seal of a bathtub drain, the hydrologic changes that occur each summer may cause isolated pockets of pressurized water to slowly drain out from under the ice sheet, resulting in more friction,” said Hoffman.

Their observations identify a previously unrecognized role of changes in hydraulically isolated regions of the bed in controlling evolution of subglacial drainage over summer. Understanding this process will be crucial for predicting the effect of increasing melt on summer speedup and associated autumn slowdown of the ice sheet into the future.

The research letter is published in this week’s Nature magazine as “Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet.” The project was an international collaboration between the University of Texas at Austin, Los Alamos National Laboratory, NASA Goddard Space Flight Center, Michigan Technological University, University of Zurich, the Swiss Federal Institute of Technology and Dartmouth College.

This project was supported by United States National Science Foundation, the Swiss National Science Foundation and the National Geographic Society. The work at Los Alamos was supported by NASA Cryospheric Sciences, and through climate modeling programs within the US Department of Energy, Office of Science.

Also see "Geoscience: The plumbing of Greenland's ice."

About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy's National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

Nancy Ambrosiano | Eurek Alert!
Further information:
http://www.lanl.gov/discover/news-release-archive/2014/October/10.01-greenlands-ice-sheets.php

More articles from Earth Sciences:

nachricht Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle
22.06.2018 | Technical University of Denmark

nachricht Polar ice may be softer than we thought
22.06.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>