Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking the 'pulse' of volcanoes using satellite images

05.11.2012
InSAR helps to show 'inflation' in advance of volcanic eruptions in Indonesia

A new study by scientists at the University of Miami (UM) Rosenstiel School of Marine & Atmospheric Science uses Interferometric Synthetic Aperture Radar (InSAR) data to investigate deformation prior to the eruption of active volcanoes in Indonesia's west Sunda arc.


This image shows averaged 2006-2009 ground velocity map of the west Sunda volcanic region from the Japanese Space Agency's ALOS satellite. Positive velocity (red colors) represents movement towards the satellite (e.g. uplift) and negative velocity (blue colors) movement away from the satellite (e.g. subsidence). Locations of volcanoes are marked by black triangles, historically active volcanoes by red triangles. Insets show six inflating volcanoes.

Credit: Estelle Chaussard, University of Miami

Led by geophysicist Estelle Chaussard and UM Professor Falk Amelung, the study uncovered evidence that several volcanoes did in fact 'inflate' prior to eruptions due to the rise of magma. The fact that such deformation could be detected by satellite is a major step forward in volcanology; it is the first unambiguous evidence that remotely detected ground deformation could help to forecast eruptions at volcanoes.

"Surveying entire volcanic regions using satellite data is of primary importance to the detection of ground deformation prior to the onset of eruptions. If volcanic inflation is observed, it can help us to predict where the next eruption may occur. Moreover, in regions like Indonesia, where volcanoes are prevalent and pose a threat to millions of people, and where ground-based monitoring is sparse, remote sensing via satellite could become a major forecasting tool," said Chaussard.

Analyzing more than 800 InSAR images from the Japanese Space Exploration Agency's ALOS satellite, the team surveyed 79 volcanoes in Indonesia between 2006 and 2009. They detected deformation at six volcanic centers, three of which erupted after the observation period, confirming that inflation is a common precursor of volcanic eruptions at west Sunda volcanoes.

"The notion of detecting deformation prior to a volcanic eruption has been around for a while," said Amelung, who has been studying active volcanoes for 15 years. "Because this region is so volcanically active, our use of InSAR has been very successful. We now have a tool that can tell us where eruptions are more likely to occur."

The team will now study other parts of Indonesia and then in the Philippines, also prone to volcanic activity. They will use data from the Japanese Space Agency's ALOS-2 which will be launched next year.

"The monitoring of changes to the Earth's surface helps us to better predict the onset of volcanic activity, which can have devastating impacts on human life," said Amelung. "Like with earthquakes and tsunamis, however, we cannot predict activity with certainty, but we hope that new tools like satellite remote sensing will help us to gather critical information in near real-time so we can anticipate the risk of eruptions and deploy resources in a timely manner."

This study also reveals that there are regional trends in depths of magma storage. Indonesian volcanoes have magma reservoirs at shallow depths probably due to the tectonic setting of the region, which account for the way the region is deforming. If a volcanic chamber is located close to the surface it is usually associated with a higher risk for significant eruption, thus these observations play a major role in volcanic hazard assessment.

The article entitled "Precursory inflation of shallow magma revervoirs at west Sunda volcanoes detected by InSAR" authored by Chaussard and Amelung appears in Geophysical Research Letters. Support was provided by grants from the National Aeronautics and space Administration (NASA) and the National Science Foundation (NNX09AK72G and EAR-0810214.) ALOS-PALSAR imagery used in the study is copyrighted by the Japanese Space Agency (JAXA).

About the University of Miami's Rosenstiel School

The University of Miami is the largest private research institution in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, please visit www.rsmas.miami.edu.

Barbra Gonzalez | EurekAlert!
Further information:
http://www.rsmas.miami.edu

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>