Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surprises in the South polar vortex in Venus’ atmosphere

25.03.2013
The astronomers in the UPV/EHU’s Planetary Science Group have published, on-line in the prestigious journal Nature Geoscience, a study of the atmospheric vortex of the south pole of Venus, a huge whirlwind the size of Europe.
In the atmosphere there are two main cloud layers separated by a distance of 20km. The UPV/EHU astronomers have been closely monitoring the movement of the vortex on both levels, and have been able to confirm the erratic nature of this movement.

“We knew it was a long-term vortex; we also knew that it changes shape every day. But we thought that the centres of the vortex at different altitudes formed only a single tube, but that is not so. Each centre goes its own way, yet the global structure of the atmospheric vortex does not disintegrate," explains Itziar Garate-Lopez, head researcher and member of the UPV/EHU's Planetary Science Group.

In fact, the centres of rotation of the upper and lower vortex rarely coincide in their position with respect to the vertical, and as the researchers have published in their paper, “they form a constantly evolving permanent structure” on the surface of Venus.

Long-term vortices are a frequent phenomenon in the atmospheres of fast rotating planets, like Jupiter and Saturn, for example. Venus rotates slowly, yet it has permanent vortices in its atmosphere at both poles. What is more, the rotation speed of the atmosphere is much greater than that of the planet. “We’ve known for a long time that the atmosphere of Venus rotates 60 times faster than the planet itself, but we didn’t know why. The difference is huge; that is why it’s called super-rotation. And we‘ve no idea how it started or how it keeps going.”

The permanence of the Venus vortices contrasts with the case of the Earth. “On the Earth there are seasonal effects and temperature differences between the continental zones and the oceans that create suitable conditions for the formation and dispersal of polar vortices. On Venus there are no oceans or seasons, and so the polar atmosphere behaves very differently,” says Garate-Lopez.

Looking at the poles of Venus

The UPV/EHU group has been able to monitor the evolution of the south pole vortex thanks to one of the instruments on board the European Space Agency’s Venus Express spacecraft, which has been orbiting our neighbouring planet since April 2006. “The orbit of this craft is very elliptical: it gets very close to the North pole and South pole, yet the planet is observed from a greater distance, which allows a more global vision to be obtained. This is what we needed for our study, a more complete view of the vortex and at a lower speed, so that the instrument we used could capture the images we needed." Also needed was a more extended view offering a detailed view of the planet's south pole, whereas the north pole is observed from much shorter distances, which prevents it from being observed globally," explains Garate-Lopez.

The UPV/EHU astronomers have been using the VIRTIS-M infrared camera on the Venus Express probe and have been analysing data obtained in the course of 169 earth days, and in particular, they have been studying in great detail the data on the 25 most representative orbits.

Garate-Lopez explains that this is no straightforward task: “This camera doesn’t take individual photos like an ordinary camera, it divides the light into different wave lengths that enable various vertical layers of the planet’s atmosphere to be observed simultaneously. Besides, we have compared images separated by one-hour intervals and this has enabled us to monitor the speed at which the clouds move,” says Garate-Lopez.

The UPV/EHU astronomers Agustín Sánchez-Lavega, director the Planetary Science Group, Ricardo Hueso and Itziar Garate-Lopez have been working in collaboration with experts from the Astrophysics Institute of Andalusia (CSIC-Spanish Scientific Research Council), the Astronomical Observatory of Lisbon (CAAUL), the Paris Observatory and the Institute of Space Astrophysics and Cosmic Physics in Rome.

Astrofisika, Astronautika, Astronomia, UnibertsitateakGo to top of page
NotesGarate-Lopez, I., R. Hueso, A. Sánchez-Lavega, J. Peralta, G. Piccioni, P. Drossart. A chaotic long-lived vortex at the southern pole of Venus. Nature Geoscience, 24 March 2013, DOI: 10.1038/NGEO1764.

Aitziber Lasa | EurekAlert!
Further information:
http://www.ehu.es
http://www.elhuyar.com

More articles from Earth Sciences:

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

nachricht Drones survey African wildlife
11.07.2018 | Schweizerischer Nationalfonds SNF

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>