Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Summer melt-driven streams on Greenland's ice sheet brought into focus

06.04.2016

Study provides new tool to probe meltwater drainage should also help project glacial response to climate change, says University of Oregon researcher

Erosion by summertime melt-driven streams on Greenland's ice sheet shapes landscapes similarly to, but much faster than, rivers do on land, says a University of Oregon geologist.


Graphic shows a drainage system view that is overlaid on a satellite image of a portion of Greenland's ice sheet during the movement of summertime meltwater moving from high elevations downward to the sea.

Courtesy of Leif Karlstrom

The approach used to study the ice sheet should help to broaden scientific understanding of melt rates and improve projections about glacial response to climate change, says Leif Karlstrom, a professor in the UO Department of Geological Sciences.

The study, online ahead of print in the journal Geophysical Research Letters, also found that the topography of Greenland's bedrock below the slowly flowing ice sheet has a role in the formation of basins in the ice above as high-elevation streams make their way downward toward the sea.

"How fast is the ice sheet melting, and how much the melt will contribute to rising sea levels are important questions," Karlstrom said. "It is important to quantify the melt rate, but that is not easy. Our study allows us to use geometric characteristics of the channel network -- their patterns on the landscape -- as a diagnostic tool."

Projections on sea-level rise, such as those done with remote sensing or satellite observations, he said, have been difficult to determine accurately because melt rates vary widely each year, based on such factors as summer temperatures and elevations across the ice sheet.

In the study, Karlstrom and Kang Yang of the University of California, Los Angeles analyzed high-resolution satellite imagery from NASA digital elevation models that let them see the slope of the ice sheet and underlying bedrock. They focused on stream channels at four levels of the ice sheet, from 1,000 meters (3,280 feet) to 1,600 meters (5,249 feet), of southwest Greenland.

Geometrical characteristics of these streams -- called supraglacial channels because they occur on the ice surface -- mimic features often found for rivers on land. Such similarities of erosion patterns on ice and land, despite having different mechanisms, came as a surprise, Karlstrom said. On the ice sheet surface, erosion occurs as meltwater streams carve drainage channels by melting underlying ice. On land, rivers carve drainage channels by pushing and plucking sediment as they flow toward the sea, cutting down as the land surface uplifts due to tectonic activity.

Geologists who study geomorphology -- how landscapes form -- now have a virtual real time model to test theories of landscape evolution, Karlstrom said. River erosion on land occurs over millions of years, but streams on the ice sheet carve their routes much more rapidly. In the study, researchers documented daily incision by flowing meltwater of up to 10 centimeters (4 inches).

"It's lower elevations at the margins of the ice sheet that experience the most melt," Karlstrom said. River erosion stops each year when freezing temperatures return. Frozen channels from previous years remain visible, providing a yearly history of erosion patterns much like tree rings reflect age, he said.

In addition to using glacial melt to test theories of land-based geological processes, the researchers suggest an application to studies of other planets.

###

Part of the project was supported by a NASA grant (NNX14AH93G) to Yang.

Source: Leif Karlstrom, assistant professor of geological sciences, leif@uoregon.edu

Note: The UO is equipped with an on-campus television studio with a point-of-origin Vyvx connection, which provides broadcast-quality video to networks worldwide via fiber optic network. There also is video access to satellite uplink and audio access to an ISDN codec for broadcast-quality radio interviews.

Links:

Paper abstract: http://onlinelibrary.wiley.com/doi/10.1002/2016GL067697/abstract

Karlstrom faculty page: http://pages.uoregon.edu/leif/

UO Department of Geological Sciences: http://geology.uoregon.edu/

Media Contact

Jim Barlow
jebarlow@uoregon.edu
541-346-3481

 @UOregonNews

http://uonews.uoregon.edu 

Jim Barlow | EurekAlert!

More articles from Earth Sciences:

nachricht Atmospheric scientists reveal the effect of sea-ice loss on Arctic warming
11.03.2019 | Institute of Atmospheric Physics, Chinese Academy of Sciences

nachricht Sensing shakes
11.03.2019 | University of Tokyo

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Researchers measure near-perfect performance in low-cost semiconductors

18.03.2019 | Power and Electrical Engineering

Nanocrystal 'factory' could revolutionize quantum dot manufacturing

18.03.2019 | Materials Sciences

Long-distance quantum information exchange -- success at the nanoscale

18.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>