Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study proves that magma chambers can be totally molten

11.06.2020

The study challenges a recently-emerged paradigm that magma chambers are huge masses of crystals with just a very small amount of melt.

Wits University (University of the Witwatersrand, Johannesburg, South Africa) PhD student, Willem Kruger's study on the state of magma within plutonic magmatic systems in the Earth's crust has been published in the high impact journal, Nature Communications.


Photograph of a magnetitite layer from the Bushveld Complex and a chemical contour map showing the distribution of chromium within the layer after analysis with a portable XRF spectrometer.

Credit: Wits University

Working alongside his PhD supervisor, Professor Rais Latypov, from the Wits School of Geosciences, Kruger's paper shows that basaltic magma chambers may develop as large bodies of crystal-free melts in the Earth's crust.

This study challenges a recently-emerged paradigm that magma chambers are huge masses of crystal-rich mush - in other words, crystals with just a very small amount of melt.

Attempts to understand the processes that operate in magma chambers in our planet's crust is incredibly challenging as they are hidden from direct observations. Geologists must follow an indirect approach to study these features, such as examining their ancient fossilised remains that are exposed on Earth's surface after millions of years of erosion.

To examine the state of magma within a chamber is very demanding, as it requires the study of the very contact between the crystallising margins of magma bodies (also called solidification fronts) and their liquid interiors.

Difficulties in understanding the behaviour of solidification fronts can fortunately be overcome by studying a particularly fascinating rock type, called massive magnetitite, from the Bushveld Complex in South Africa.

"Magnetitite contains chromium that is an extremely sensitive indicator of magma chamber processes and can be used to study solidification fronts in extreme detail," says Kruger.

"By mapping the distribution of chromium in magnetitite in the field we can observe the two-dimensional propagation patterns of solidification fronts on a scale never done before."

Kruger and Latypov found that all evolved liquid is effectively removed from the solidification front of magnetitite as it propagates towards the chamber interior. "This is because of extremely effective compositional convection that occurs during the crystallisation of magnetite. The process results in the solidification front to propagate as almost a completely solid surface." says Latypov.

This research shows that such powerful compositional convection may inhibit the formation of crystal-rich mushes in basaltic magma chambers.

There are many reasons to believe that this process is not unique to magnetitite layers of the Bushveld Complex but will likely operate in other rock types as well, for instance, in the Bushveld's economically important chromitite layers.

"Our results thus argue for the existence of large, liquid-dominated magma chambers hidden within the Earth's crust," says Kruger.

Media Contact

Schalk Mouton
schalk.mouton@wits.ac.za
27-827-399-637

 @Wits_News

http://www.wits.ac.za 

Schalk Mouton | EurekAlert!
Further information:
http://www.wits.ac.za/news/latest-news/research-news/2020/2020-06/phd-students-study-on-the-state-of-magma-in-crustal-reservoirs-published-in-nature-communications.html

Further reports about: Earth's crust chromium magma magma chambers magnetitite planet's crust

More articles from Earth Sciences:

nachricht Typhoon changed earthquake patterns
03.07.2020 | GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

nachricht Groundwater protection on Spiekeroog Island - first installation of a salt water monitoring system
01.07.2020 | Leibniz-Institut für Angewandte Geophysik (LIAG)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>