Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of cloud cover in tropical Pacific reveals future climate changes

05.11.2015

UM Rosenstiel School researchers find new evidence for weakening of Walker circulation

A new analysis using changes in cloud cover over the tropical Indo-Pacific Ocean showed that a weakening of a major atmospheric circulation system over the last century is due, in part, to increased greenhouse gas emissions.


Walker Circulation is illustrated.

Credit: NOAA Climate.gov

The findings from researchers at the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science provide new evidence that climate change in the tropical Pacific will result in changes in rainfall patterns in the region and amplify warming near the equator in the future.

"Our findings show that an increasing concentration of greenhouse gases leads to significant changes in atmospheric circulation and tropical rainfall patterns," said Katinka Bellomo, an alumna of the UM Rosenstiel School. "This study demonstrates that we can predict these changes in the Walker circulation from changes in cloud cover."

The UM Rosenstiel School researchers used historical observations of cloud cover as a proxy for wind velocity in climate models to analyze the Walker circulation, the atmospheric air flow and heat distribution in the tropic Pacific region that affects patterns of tropical rainfall.

Their findings revealed a weakening and eastward shift of the Walker circulation over the last century due to greenhouse gas emissions. The analysis showed that changes in cloud cover can serve as a proxy in climate models for wind velocity in the atmosphere, which cannot be directly measured.

"This study makes innovative use of a decades old-dataset," said Amy Clement, professor of atmospheric science at the UM Rosenstiel School. "It is impressive that visual observations from the decks of ships transiting the Pacific Ocean over a half-century can tell us something so fundamental about climate change."

This new information can be incorporated into current climate models to predict future changes in the magnitude and pattern of the Walker Circulation due to increased greenhouse gas emissions. The study suggests that rainfall will decrease over Indonesia and in the western Pacific and increase over the central Pacific Ocean.

###

The study, titled "Evidence for weakening of the Walker circulation from cloud observations," was published in the journal Geophysical Research Letters. The study's authors include: Katinka Bellomo and Amy C. Clement of the UM Rosenstiel School. The work was supported by grants from National Science Foundation Climate and Large Scaled Dynamics, National Oceanic and Atmospheric Administration's Climate Program Office, grant # NA10OAR4310204 and Department of Energy Biological and Environmental Research, grant #DESC0004897. The publication can be accessed here: http://onlinelibrary.wiley.com/doi/10.1002/2015GL065463/abstract

About the University of Miami's Rosenstiel School

The University of Miami is one of the largest private research institutions in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, visit: http://www.rsmas.miami.edu.

Diana Udel | EurekAlert!

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>