Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies California cliffs at risk of collapse

21.12.2017

Danger - Unstable Cliffs - Stay Back: The yellow warning signs that pepper coastal cliffs from northern California to the US-Mexico border may seem overly dramatic to the casual observer. But actively eroding cliffs make up the majority of the California coastline, and sudden landslides and collapses have caused injuries and several fatalities in recent years. In addition, eroding cliffs currently threaten highways, houses, businesses, military bases, parks, power plants, and other critical facilities--all in all billions of dollars of development.

Research suggests that erosion rates will increase as sea level rises, further exacerbating these problems. "It is critical we study current and historical cliff retreat so we can better plan for the future," says Adam Young, a researcher at Scripps Institution of Oceanography at the University of California San Diego who recently published a unique large-scale analysis of coastal cliff erosion in California.


Adam Young, a researcher at Scripps Institution of Oceanography at the University of California, San Diego, recently published a new large-scale analysis of coastal cliff erosion from San Diego to San Francisco. To analyze the data, Young compared two massive LiDAR data sets, three-dimensional maps of the California coastline, recorded eleven years apart. This video highlights one of the areas he identified with high erosion rates, near San Francisco.

Credit: Adam Young, Scripps Institution of Oceanography, University of California San Diego

The study, published in the journal Geomorphology, and funded by California Sea Grant, provides accurate erosion rates for 680 miles of the California coast, from the US-Mexico border to Bodega Head in Sonoma County.

It identifies areas that have eroded faster than others, and introduces a new experimental hazard scale to identify areas that may be at greater risk of impending collapse. It is the first such large-scale study in California using LiDAR data--laser elevation data recorded in aerial surveys--which were used to create detailed 3D elevation maps.

... more about:
»clear »erosion rates »rainfall »sea level »waves

Existing cliff erosion studies are often small scale, use a variety of techniques, and often rely on lower quality data sources, providing a patchwork across the state. "What's unique about this study is that it applies a consistent methodology across a very large area using accurate high-resolution laser data," says Young.

While some of the basic causes of coastal cliff erosion--such as rainfall and waves--are clear, this has not translated into a simple way to predict future erosion rates or identify areas at risk. Variation in cliff geology, beach protection, exposure to weather, and other factors also complicate predicting erosion rates.

Previous research has identified clear correlations between rainfall and coastal erosion in southern California, but the impact of storms waves has been more elusive. "It's difficult to measure," explains Young, "We lack field observations because with powerful waves crashing against the cliff, it is not an easy place to make measurements." Variation in cliff geology, beach protection, exposure to weather, and other factors also complicate predicting erosion rates.

Understanding erosion, preventing disaster

To create a consistent analysis of recent cliff changes, Young compared two massive LiDAR data sets, three-dimensional maps of the California coastline, recorded eleven years apart. The highest cliff erosion rates were found in San Onofre, Portuguese Bend, Palos Verdes, Big Sur, Martins Beach, Daly City, Double Point, and Point Reyes (see map). Young then compared the recent cliff erosion maps to historical records from 1932 and 1934. By comparing the different maps, he built an analysis for the majority of the state's coastline, showing both recent and historical erosion rates.

The study shows that the historical cliff erosion rate does not always provide a good prediction of future rates. "The results show that if a cliff experienced a large of amount of erosion during one time period, it was followed by a time period with very little erosion, and the cliff could be relatively stabilized for a time," explains Young. "It will mobilize again, but we don't know when and more research is needed to better understand the time cycles involved."

Young also found that cliffs with high erosion rates in recent times were often preceded by time periods with very little erosion. These are key findings, because models predicting future cliff retreat are often based on projecting the historical rates.

Young also introduced a new experimental measure to identify the riskiest precipices. Previous research had suggested that the difference between erosion rates of the cliff face compared to the cliff top could indicate instability--in short, the cliff steepness. When he applied this hazard index, Young identified worrisome spots along the California coast, including San Onofre State Beach, Big Sur, Martin's Beach, and Daly City.

A reality check for planners

Young is currently working on a set of maps to be made available to the public, and he has presented the work at scientific conferences. He says, "I hope that this study will help improve models that predict erosion, help identify hazardous areas, and assist policymakers who are working to protect our coast."

The research has already caught the attention of planners at the California Coastal Commission, a state agency charged with preserving and protecting the coastline for current and future generations.

"The study could be particularly useful for local governments looking to update their local coastal programs in light of climate change and sea level rise," says Lesley Ewing, a senior coastal engineer for the commission. While the study does not provide projections for future erosion rates, researchers expect that sea-level rise will contribute to faster erosion rates and greater risk to public and private coastal property, and governments are working to plan for the impacts.

"The coast of California is stacked with very expensive real estate--not to mention power plants, wastewater treatment facilities, and highways," she says. Some of this is already at risk--over 100 miles of shoreline armory has been built to protect it, and more will be at risk in the future.

"There's so much opportunity to use this research--this could serve as a reality check for planners who often focus on specific regions and smaller scales," adds Ewing.

###

The research was also supported by the California Department of Parks and Recreation, Division of Boating and Waterways.

About California Sea Grant

NOAA's California Sea Grant College Program funds marine research, education and outreach throughout California. Our headquarters is at Scripps Institution of Oceanography, University of California, San Diego; we are one of 33 Sea Grant programs in the National Oceanic and Atmospheric Administration (NOAA), U.S. Department of Commerce.

Media Contact

Katherine Leitzell
kleitzell@ucsd.edu
858-346-3665

 @UCSanDiego

http://www.ucsd.edu 

Katherine Leitzell | EurekAlert!

Further reports about: clear erosion rates rainfall sea level waves

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>