Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study finds unprecedented warmth in Arctic

24.10.2013
The heat is on, at least in the Arctic.

Average summer temperatures in the Eastern Canadian Arctic during the last 100 years are higher now than during any century in the past 44,000 years and perhaps as long ago as 120,000 years, newfound evidence indicates.


Gifford Miller collects long-dead tundra plants exposed by melting of an Arctic ice cap on Baffin Island, Canada. Using radiocarbon dating of plants from the Eastern Canadian Arctic, he and his colleagues have found that average summertime temperatures in the region are currently higher than at any time in the past 44,000 years. Credit: Gifford Miller


As ice caps today recede, like this one nicknamed Sputnik, they expose dead plants killed long ago when the ice cap formed and then preserved ever since by the ice. By carbon-dating the organic material, scientists can determine when the plants lived, thousands of years ago, and infer the average temperatures back then that allowed the plants to thrive. Credit: Gifford Miller

The new research offers the first direct evidence that the present warmth in the Eastern Canadian Arctic exceeds the peak warmth there in the Early Holocene, when solar energy reaching the Northern Hemisphere in summer was roughly 9 percent greater than today, said Gifford Miller of the University of Colorado, Boulder (CU-Boulder), who led the study. The Holocene is a geological epoch that began after Earth’s last glacial period ended roughly 11,700 years ago and which continues today.

Miller and his colleagues used dead moss clumps emerging from receding ice caps on Baffin Island as tiny clocks. At four different ice caps, radiocarbon dates show the mosses had not been exposed to the elements since at least 44,000 to 51,000 years ago.

Since radiocarbon dating is only accurate to about 50,000 years and because Earth’s geological record shows it was in a glaciation stage prior to that time, the indications are that Canadian Arctic temperatures today have not been matched or exceeded for roughly 120,000 years, Miller said.

“The key piece here is just how unprecedented the warming of Arctic Canada is,” said Miller, a geological sciences professor and a fellow at the university’s Institute of Arctic and Alpine Research. “This study really says the warming we are seeing is outside any kind of known natural variability, and it has to be due to increased greenhouse gases in the atmosphere.”

A paper on the subject appeared online Oct. 21 in Geophysical Research Letters, a journal of the American Geophysical Union.

Miller and his colleagues compiled the age distribution of 145 radiocarbon-dated plants in the highlands of Baffin Island that were exposed by ice recession during the year they were collected by the researchers. All samples collected were within 1 meter of the ice caps, which are generally receding by 2 to 3 meters a year. “The oldest radiocarbon dates were a total shock to me,” said Miller.

Located just east of Greenland, the 508,000 square-kilometer (196,000-square-mile) Baffin Island is the fifth largest island in the world. Most of it lies above the Arctic Circle. Many of the ice caps on the highlands of Baffin Island rest on relatively flat terrain, usually frozen to their beds. “Where the ice is cold and thin, it doesn’t flow, so the ancient landscape on which they formed is preserved pretty much intact,” said Miller.

Ice melted by Arctic warming exposed dead plants
As ice caps today recede, like this one nicknamed Sputnik, they expose dead plants killed long ago when the ice cap formed and then preserved ever since by the ice. By carbon-dating the organic material, scientists can determine when the plants lived, thousands of years ago, and infer the average temperatures back then that allowed the plants to thrive. Credit: Gifford Miller

To reconstruct the past climate of Baffin Island beyond the limit of radiocarbon dating, Miller and his team used data from ice cores previously retrieved by international teams from the nearby Greenland Ice Sheet.

The ice cores showed that the youngest time interval from which summer temperatures in the Arctic were plausibly as warm as today is about 120,000 years ago, near the end of the last interglacial period. “We suggest this is the most likely age of these samples,” said Miller.

The new study also showed summer temperatures cooled in the Canadian Arctic by about 2.8 degrees Celsius (5 degrees Fahrenheit) from roughly 5,000 years ago to about 100 years ago – a period that included the Little Ice Age from 1275 to about 1900.

“Although the Arctic has been warming since about 1900, the most significant warming in the Baffin Island region didn’t really start until the 1970s,” said Miller. “And it is really in the past 20 years that the warming signal from that region has been just stunning. All of Baffin Island is melting, and we expect all of the ice caps to eventually disappear, even if there is no additional warming.”

Temperatures across the Arctic have been rising substantially in recent decades as a result of the buildup of greenhouse gases in Earth’s atmosphere. Studies by CU-Boulder researchers in Greenland indicate temperatures on the ice sheet have climbed 3.9 degrees Celsius (7 degrees Fahrenheit) since 1991.

Co-authors on the new study include CU-Boulder Senior Research Associate Scott Lehman, former CU-Boulder doctoral student and now Prescott College Professor Kurt Refsnider, University of California Irvine researcher John Southon and University of Wisconsin, Madison Research Associate Yafang Zhong. The National Science Foundation provided the primary funding for the study.

AGU Contact:
Thomas Sumner
+1 (202) 777-7516
tsumner@agu.org
University of Colorado Boulder Contact:
Jim Scott, CU-Boulder media relations
+1 (720) 381-9479
jim.scott@colorado.edu
Notes for Journalists
Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this early view article by clicking on this link: http://onlinelibrary.wiley.com/doi/10.1002/2013GL057188/abstract

Or, you may order a copy of the final paper by emailing your request to Thomas Sumner at tsumner@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release is under embargo.

Title

“Unprecedented recent summer warmth in Arctic Canada”

Gifford H. Miller, Scott J. Lehman, and Kurt A. Refsnider
Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, USA;
John R. Southon
Earth System Science Dept., University of California Irvine, Irvine, USA;
Yafang Zhong
Center for Climatic Research, University of Wisconsin, Madison, WI, USA.
Contact information for the authors:
Gifford H. Miller, Cell Phone: +1 (303) 990-2071, Office Phone: + 1 (303) 492-6962, Email: gmiller@colorado.edu

Thomas Sumner | American Geophysical Union
Further information:
http://www.agu.org
http://news.agu.org/press-release/new-study-finds-unprecedented-warmth-in-arctic/

More articles from Earth Sciences:

nachricht Responses of benthic foraminifera to changes of temperature and salinity
14.01.2019 | Science China Press

nachricht 'Realistic' new model points the way to more efficient and profitable fracking
14.01.2019 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

Im Focus: Physicists uncover new competing state of matter in superconducting material

A team of experimentalists at the U.S. Department of Energy's Ames Laboratory and theoreticians at University of Alabama Birmingham discovered a remarkably long-lived new state of matter in an iron pnictide superconductor, which reveals a laser-induced formation of collective behaviors that compete with superconductivity.

"Superconductivity is a strange state of matter, in which the pairing of electrons makes them move faster," said Jigang Wang, Ames Laboratory physicist and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

 
Latest News

Scientists coax proteins to form synthetic structures with method that mimics nature

15.01.2019 | Life Sciences

Next generation photonic memory devices are light-written, ultrafast and energy efficient

15.01.2019 | Information Technology

Viennese scientists develop promising new type of polymers

15.01.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>