Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds stream temperatures don't parallel warming climate trend

03.05.2012
Despite a general increase in air temperatures over the past several decades, streams are not necessarily warming at the same rate, according to a new analysis of streams in the western United States using long-term monitoring programs.

Several factors may influence the discrepancy, researchers say, including snowmelt, interaction with groundwater, flow and discharge rates, solar radiation, wind and humidity. But even after factoring out those elements, the scientists were surprised by the cooler-than-expected maximum, mean and minimum temperatures of the streams.

Results of the research, which was supported by the U.S. Geological Survey, the U.S. Forest Service and Oregon State University in Corvallis, will be published May 16 in Geophysical Research Letters, a journal of the American Geophysical Union.

"Individually, you can find streams that seem to be getting warmer and others that are getting cooler," said Ivan Arismendi, a post-doctoral researcher at Oregon State University and lead author on the study. "Some streams show little effect at all. But the bottom line is that recent trends in overall stream temperature do not parallel climate-related trends."

The researchers caution that the findings do not mean that climate change will not have an impact on stream temperature, which is a fundamental driver of ecosystem processes in streams. However, the relationship between air temperatures and stream temperatures may be more complex than previously realized and require additional monitoring.

Alternatively, there may be a time lag between air temperature and stream temperature, the researchers said.

"One surprise was how few stream gauging stations have the necessary long-term records for evaluating climate-related trends in water temperatures," said coauthor Jason Dunham, an aquatic ecologist with the U.S. Geological Survey in Corvallis, Ore. "Most of them are located in streams with high human influence, which makes it difficult to separate climate effects from local human impacts."

"In those areas where human impact was minimal, the variability in trends was impressive," added Dunham. "It suggests to us that a variety of local influences may strongly affect how stream temperatures respond to climate."

Arismendi and his colleagues considered more than 600 gauging stations for the study but only 20 of the stations had a sufficiently lengthy period of monitoring - and lacked human influence. These long-term monitoring sites are operated primarily by the U.S. Geological Survey and U.S. Forest Service, and were located in Oregon, Washington, Idaho, California, Nevada and Alaska.

Warming temperatures can create more rapid or earlier snowmelt and affect stream temperatures in some locations, said coauthor Roy Haggerty, a professor in OSU's College of Earth, Ocean, and Atmospheric Sciences. Another explanation for the lack of warming in many streams could be a time lag that can occur between precipitation entering underground aquifers and entering the stream.

"Groundwater can influence stream temperatures as well as stream flow and in some cases, it can take many years for that groundwater to make it to the stream," noted Haggerty. "This and the other physics processes of a stream need to be considered when analyzing its heat budget - from the geology and stream bed, to the amount of shading in the riparian zone."

Sherri Johnson, a research ecologist with the U.S. Forest Service, also in Corvallis, and coauthor on the study, said stream temperatures can be important for a variety of reasons.

"Temperature is a key indicator of water quality and many streams throughout the Northwest have increased stream temperatures associated with human activity," Johnson said. "Generally speaking, cooler stream temperatures are beneficial, and are a crucial factor in maintaining healthy ecosystems and populations of salmon, steelhead, trout and other cold-water species."

Arismendi said the study points out the value of long-term data from streams that have had minimal human impacts.

"The fact that stream temperatures don't correlate to climate trends in a predicable way indicates we need to study the relationship further to better appreciate the complexity," Arismendi said. "Our knowledge of what influences stream temperatures is limited by the lack of long-term monitoring sites, and previous lumping of results among streams with relatively low and high levels of human impacts.

"Local variability is really important in driving climate sensitivity of streams," he added.

Notes for Journalists

Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this paper in press by clicking on this link: http://www.agu.org/pubs/crossref/pip/2012GL051448.shtml

Or, you may order a copy of the final paper by emailing your request to Kate Ramsayer at kramsayer@agu.org. Please provide your name, the name of your publication, and your phone number.

Title:

"The paradox of cooling streams in a warming world: Regional climate trends do not parallel variable local trends in stream temperature in the Pacific continental United States"

Authors:

Ivan Arismendi: College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA;

Sherri Johnson: US Forest Service Pacific Northwest Research Station, Corvallis, Oregon, USA;

Jason Dunham: US Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, Oregon, USA;

Roy Haggerty: College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA;

David Hockman-Wert: US Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, Oregon, USA.

Contact information for the authors:

Ivan Arismendi, email: arismendi@science.oregonstate.edu, telephone: 541-750-7443; Sherri Johnson, email: johnsons@fsl.orst.edu, telephone: 541-758-7771; Jason Dunham, email: jdunham@usgs.gov, telephone: 541-750-0990; Roy Haggerty, email: haggertr@geo.oregonstate.edu, telephone: 541-737-1210.

Kate Ramsayer | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht The struggle for life in the Dead Sea sediments: Necrophagy as a survival mechanism
26.03.2019 | Geological Society of America

nachricht Mangroves and their significance for climate protection
26.03.2019 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New gene potentially involved in metastasis identified

Gene named after Roman goddess Minerva as immune cells get stuck in the fruit fly’s head

Cancers that display a specific combination of sugars, called T-antigen, are more likely to spread through the body and kill a patient. However, what regulates...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Searching for disappeared anti-matter: A successful start to measurements with Belle II

26.03.2019 | Physics and Astronomy

Extremely accurate measurements of atom states for quantum computing

26.03.2019 | Physics and Astronomy

Listening to the quantum vacuum

26.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>