Study finds high melt rates on Antarctica's most stable ice shelf

This is Scripps Oceanography postdoctoral researcher Matt Siegfried at the Whillans Ice Stream field camp on Antarctica. Credit: Scripps Oceanography/Oliver Marsh

A new Scripps Institution of Oceanography at UC San Diego-led study measured a melt rate that is 25 times higher than expected on one part of the Ross Ice Shelf. The study suggests that high, localized melt rates such as this one on Antarctica's largest and most stable ice shelf are normal and keep Antarctica's ice sheets in balance.

The Ross Ice Shelf, a floating body of land ice the size of France jutting out from the Antarctic mainland, continuously melts and grows in response to changes to both the ice sheet feeding it and the warmer Southern Ocean waters beneath it.

For six weeks the researchers collected radar data to map changes in ice shelf thickness to understand the processes that contribute to melting at its base. The findings revealed dramatic changes in melt rate within less than a mile.

The highest melting rates of more than 20 meters (66 feet) per year are thought to contribute to the rapid formation of channels at the base of the ice shelf, which can result from fresh water flowing out from lakes under the West Antarctica ice sheet. Shifts in subglacial drainage patterns change the location of these basal channels, which could impact the ice shelf's stability by unevenly distributing the melting at the base.

“The highest melt rates are all clustered at the start of a developing ice shelf channel,” said Scripps alumnus Oliver Marsh, a postdoctoral researcher at the University of Canterbury and lead author of the study. “The location of the melting strengthens the idea that freshwater from the local subglacial drainage system is responsible for the evolving ice shelf features.”

The study, published in the American Geophysical Union's Geophysical Research Letters, is the first to document fine-scale changes taking place on the ice shelf that help maintain its natural balance with the surrounding ocean waters.

“It's just as important to study the places that aren't changing as the ones that are,” said Scripps glaciologist Helen Amanda Fricker, a co-author of the study. “We need to understand what is causing the melting in order to predict how these places may change in the future.”

Melting of ice shelves does not directly contribute to sea-level rise, but instead they hold back water frozen in the larger ice sheet that will cause sea levels to rise. The study helps researchers understand the oceanographic processes necessary to better predict future sea-level rise from the melting of ice sheets due to climate change.

“Below the Ross Sea is one of the most remote parts of the ocean floor, and is largely unmapped,” said Matt Siegfried, Scripps postdoctoral researcher and a co-author of the study. “This research is helping us better understand the interactions between the ice sheet and the ocean in this remote region on Earth.”

According to the researchers, more sustained, long-term measurements are necessary to determine the exact cause of the high melt rate and how it changes over seasonal or annual timescales.

###

The study, part of the National Science Foundation-funded Whillans Ice Stream Subglacial Access Research Drilling project (WISSARD), was supported by UC San Diego's John Dove Isaacs Chair in Natural Philosophy awarded to Fricker.

Scripps Institution of Oceanography: scripps.ucsd.edu

Scripps News: scrippsnews.ucsd.edu

About Scripps Institution of Oceanography

Scripps Institution of Oceanography at the University of California, San Diego, is one of the oldest, largest, and most important centers for global science research and education in the world. Now in its second century of discovery, the scientific scope of the institution has grown to include biological, physical, chemical, geological, geophysical, and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today on every continent and in every ocean. The institution has a staff of more than 1,400 and annual expenditures of approximately $195 million from federal, state, and private sources. Scripps operates oceanographic research vessels recognized worldwide for their outstanding capabilities. Equipped with innovative instruments for ocean exploration, these ships constitute mobile laboratories and observatories that serve students and researchers from institutions throughout the world. Birch Aquarium at Scripps serves as the interpretive center of the institution and showcases Scripps research and a diverse array of marine life through exhibits and programming for more than 430,000 visitors each year. Learn more at scripps.ucsd.edu and follow us at: Facebook | Twitter | Instagram.

About UC San Diego

The University of California, San Diego is a student-centered, research-focused, service-oriented public institution that provides opportunity for all. Recognized as one of the top 15 research universities worldwide and born of a culture of collaboration, UC San Diego sparks discoveries that advance society, drive economic growth and positively impact the world. Our students, who learn from Nobel laureates, MacArthur Fellows and National Academy members, are committed to public service. For the sixth consecutive year, UC San Diego has been ranked first in the nation based on research, civic engagement and social mobility. We are one campus with multiple pillars of excellence, a top ten public university that is transforming lives, shaping new disciplines and advancing the frontiers of knowledge. Learn more at http://www.ucsd.edu.

Media Contact

Mario Aguilera
scrippsnews@ucsd.edu
858-534-3624

 @UCSanDiego

http://www.ucsd.edu 

Media Contact

Mario Aguilera EurekAlert!

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

“Nanostitches” enable lighter and tougher composite materials

In research that may lead to next-generation airplanes and spacecraft, MIT engineers used carbon nanotubes to prevent cracking in multilayered composites. To save on fuel and reduce aircraft emissions, engineers…

Trash to treasure

Researchers turn metal waste into catalyst for hydrogen. Scientists have found a way to transform metal waste into a highly efficient catalyst to make hydrogen from water, a discovery that…

Real-time detection of infectious disease viruses

… by searching for molecular fingerprinting. A research team consisting of Professor Kyoung-Duck Park and Taeyoung Moon and Huitae Joo, PhD candidates, from the Department of Physics at Pohang University…

Partners & Sponsors