Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study may answer longstanding questions about Little Ice Age

31.01.2012
A new international study may answer contentious questions about the onset and persistence of Earth's Little Ice Age, a period of widespread cooling that lasted for hundreds of years until the late 19th century.

The study, led by the University of Colorado Boulder with co-authors at the National Center for Atmospheric Research (NCAR) and other organizations, suggests that an unusual, 50-year-long episode of four massive tropical volcanic eruptions triggered the Little Ice Age between 1275 and 1300 A.D. The persistence of cold summers following the eruptions is best explained by a subsequent expansion of sea ice and a related weakening of Atlantic currents, according to computer simulations conducted for the study.

The study, which used analyses of patterns of dead vegetation, ice and sediment core data, and powerful computer climate models, provides new evidence in a longstanding scientific debate over the onset of the Little Ice Age. Scientists have theorized that the Little Ice Age was caused by decreased summer solar radiation, erupting volcanoes that cooled the planet by ejecting sulfates and other aerosol particles that reflected sunlight back into space, or a combination of the two.

"This is the first time anyone has clearly identified the specific onset of the cold times marking the start of the Little Ice Age," says lead author Gifford Miller of the University of Colorado Boulder. "We also have provided an understandable climate feedback system that explains how this cold period could be sustained for a long period of time. If the climate system is hit again and again by cold conditions over a relatively short period—in this case, from volcanic eruptions—there appears to be a cumulative cooling effect."

"Our simulations showed that the volcanic eruptions may have had a profound cooling effect," says NCAR scientist Bette Otto-Bliesner, a co-author of the study. "The eruptions could have triggered a chain reaction, affecting sea ice and ocean currents in a way that lowered temperatures for centuries."

The study appears this week in Geophysical Research Letters. The research team includes co-authors from the University of Iceland, the University of California Irvine, and the University of Edinburgh in Scotland. The study was funded in part by the National Science Foundation, NCAR's sponsor, and the Icelandic Science Foundation.

Far-flung regions of ice

Scientific estimates regarding the onset of the Little Ice Age range from the 13th century to the 16th century, but there is little consensus, Miller says. Although the cooling temperatures may have affected places as far away as South America and China, they were particularly evident in northern Europe. Advancing glaciers in mountain valleys destroyed towns, and paintings from the period depict people ice-skating on the Thames River in London and canals in the Netherlands, places that were ice-free before and after the Little Ice Age.

"The dominant way scientists have defined the Little Ice Age is by the expansion of big valley glaciers in the Alps and in Norway," says Miller, a fellow at CU's Institute of Arctic and Alpine Research. "But the time in which European glaciers advanced far enough to demolish villages would have been long after the onset of the cold period."

Miller and his colleagues radiocarbon-dated roughly 150 samples of dead plant material with roots intact, collected from beneath receding margins of ice caps on Baffin Island in the Canadian Arctic. They found a large cluster of "kill dates" between 1275 and 1300 A.D., indicating the plants had been frozen and engulfed by ice during a relatively sudden event.

The team saw a second spike in plant kill dates at about 1450 A.D., indicating the quick onset of a second major cooling event.

To broaden the study, the researchers analyzed sediment cores from a glacial lake linked to the 367-square-mile Langjökull ice cap in the central highlands of Iceland that reaches nearly a mile high. The annual layers in the cores—which can be reliably dated by using tephra deposits from known historic volcanic eruptions on Iceland going back more than 1,000 years—suddenly became thicker in the late 13th century and again in the 15th century due to increased erosion caused by the expansion of the ice cap as the climate cooled.

"That showed us the signal we got from Baffin Island was not just a local signal, it was a North Atlantic signal," Miller says. "This gave us a great deal more confidence that there was a major perturbation to the Northern Hemisphere climate near the end of the 13th century."

The team used the Community Climate System Model, which was developed by scientists at NCAR and the Department of Energy with colleagues at other organizations, to test the effects of volcanic cooling on Arctic sea ice extent and mass. The model, which simulated various sea ice conditions from about 1150 to 1700 A.D., showed several large, closely spaced eruptions could have cooled the Northern Hemisphere enough to trigger the expansion of Arctic sea ice.

The model showed that sustained cooling from volcanoes would have sent some of the expanding Arctic sea ice down along the eastern coast of Greenland until it eventually melted in the North Atlantic. Since sea ice contains almost no salt, when it melted the surface water became less dense, preventing it from mixing with deeper North Atlantic water. This weakened heat transport back to the Arctic and created a self-sustaining feedback on the sea ice long after the effects of the volcanic aerosols subsided, according to the simulations.

The researchers set solar radiation at a constant level in the climate models. The simulations indicated that the Little Ice Age likely would have occurred without decreased summer solar radiation at the time, Miller says.

The University Corporation for Atmospheric Research manages the National Center for Atmospheric Research under sponsorship by the National Science Foundation. Any opinions, findings and conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
Scientific contacts

Bette Otto-Bliesner, NCAR scientist
303-497-1723
ottobli@ucar.edu
Gifford Miller, CU Institute of Arctic and Alpine Research Fellow
303-492-6962
gmiller@colorado.edu
About the article

Title: Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks

Authors: Gifford Miller, Aslaug Geirsdottir, Yafang Zhong, Darren J. Larsen, Bette L. Otto-Bliesner, Marika M. Holland, David A. Bailey, Kurt A. Refsnider, Scott J. Lehman, John R. Southon, Chance Anderson, Helgi Bjornsson, Thorvaldur Thordarson,

Publication: Geophysical Research Letters

On the Web

For news releases, images, and more www.ucar.edu/news

David Hosansky | EurekAlert!
Further information:
http://www.ucar.edu

More articles from Earth Sciences:

nachricht Rare lizard fossil preserved in amber
27.02.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht The seismicity of Mars
25.02.2020 | ETH Zurich

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Preserved and fresh – Neutrons show details of the freeze drying process

27.02.2020 | Life Sciences

Underwater Snail-o-Bot gets kick from light

27.02.2020 | Health and Medicine

Explained: Why water droplets 'bounce off the walls'

27.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>