Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stalagmites May Predict Next Big One along the New Madrid Seismic Zone

29.09.2008
Small white stalagmites lining caves in the Midwest may help scientists chronicle the history of the New Madrid Seismic Zone (NMSZ) – and even predict when the next big earthquake may strike, say researchers at the Illinois State Geological Survey and the University of Illinois at Urbana-Champaign.

While the 1811-12, magnitude 8 New Madrid earthquakes altered the course of the Mississippi River and rung church bells in major cities along the East Coast, records of the seismic zone’s previous movements are scarce.

Thick layers of sediment have buried the trace of the NMSZ and scientists must search for rare sand blows and liquefaction features, small mounds of liquefied sand that squirt to the surface through fractures during earthquakes, to record past events. That’s where the stalagmites come in.

The sand blows are few and far between, said Keith Hackley, an isotope geochemist with the Illinois State Geological Survey. In contrast, caves throughout the region are lined with abundant stalagmites, which could provide a better record of past quakes. “We’re trying to see if the initiation of these stalagmites might be fault-induced, recording very large earthquakes that have occurred along the NMSZ,” he said.

Hackley and co-workers used U-Th dating techniques to determine the age of stalagmites from Illinois Caverns and Fogelpole Cave in southwestern Illinois. They discovered that some of the young stalagmites began to form at the time of the 1811-12 earthquakes.

Hackley is scheduled to present preliminary results of the study in a poster on Sunday, 5 October, at the 2008 Joint Meeting of the Geological Society of America (GSA), Soil Science Society of America (SSSA), American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and Gulf Coast Association of Geological Societies (GCAGS), in Houston, Texas, USA.

Water slowly trickles through crevices in the ceiling of a cave and drips onto the floor. Each calcium carbonate-loaded drip falls on the last, and a stalagmite slowly grows from the bottom up. Time is typically recorded in alternating light and dark layers – each pair represents a year.

When a large earthquake shakes the ground, old cracks may seal and new ones open. As a result, some groundwater seeping through the cave ceiling traces a new pattern of drips – and, eventually, stalagmites – on the cave floor. Thus it is possible that each new generation of stalagmites records the latest earthquake.

The scientists use fine drills, much like those used by dentists, to burrow into the stalagmites to collect material for dating. In addition to the 1811-12 earthquakes, their investigation has recorded seven historic earthquakes dating as far back as almost 18,000 years before the present. Understanding the NMSZ’s past, including whether quakes recur with any regularity, will help the scientists predict the potential timing of future quakes.

In coming months, Hackley and his colleagues plan to expand the study, collecting stalagmites from caves across Indiana, Missouri and Kentucky. They hope that the new data will help to fill in more of the missing history of the NMSZ.

**WHEN & WHERE**
Sunday, 5 October, 8:00 AM – 4:45 PM (authors scheduled from 3:00-4:45 PM)
George R. Brown Convention Center: Exhibit Hall E (poster, booth 136).
View abstract, paper 147-8, at “Paleo-Seismic Activity from the New Madrid Seismic Zone Recorded in Stalagmites. A New Tool for Paleo-Seismic History”
**CONTACT INFORMATION**
For on-site assistance during the 2008 Joint Annual Meeting, 5-9 October, contact Christa Stratton or Sara Uttech in the Newsroom, George R. Brown Convention Center, Room 350B, +1-713-853-8329.
After the meeting, contact:
Keith Hackley
Isotope Geochemistry, Illinois State Geological Survey
+1-217-244-2396
hackley@isgs.uiuc.edu

Christa Stratton | EurekAlert!
Further information:
http://www.geosociety.org

More articles from Earth Sciences:

nachricht 558 million-year-old fat reveals earliest known animal
21.09.2018 | Max-Planck-Institut für Biogeochemie

nachricht Glacial engineering could limit sea-level rise, if we get our emissions under control
20.09.2018 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>