Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stagnation in the South Pacific Explains Natural CO2 Fluctuations

23.02.2018

A team led by geochemist Dr. Katharina Pahnke from Oldenburg has discovered important evidence that the rise in atmospheric carbon dioxide levels at the end of the last ice age was triggered by changes in the Southern Ocean. The researchers were able to demonstrate that the deep South Pacific was strongly stratified during the last ice age, and could thus have facilitated long-term, deep-sea storage of the greenhouse gas carbon dioxide (CO2). The study, which has now been published in the journal Science, also indicates that in the course of the warming following the end of the last ice age the mixing of the deep water masses increased, releasing stored CO2 and enhancing global warming.

The Southern Ocean plays an important role in climate events because CO2 can be absorbed from the atmosphere into the ocean. When increased amounts of dust are deposited in the seawater, microscopic algae multiply because the iron contained in the dust acts as a fertilizer.


Neodymium isotopes in fish debris showed that the water in the South Pacific was stratified during the last ice age.

Katharina Pahnke/Universität Oldenburg


Katharina Pahnke opens a sediment core from the South Pacific.

Katharina Pahnke/Universität Oldenburg

When these single celled algae die, they sink to the ocean floor, taking the sequestered carbon dioxide with them. To ensure long-term removal of the CO2 from the atmosphere, however, it must be stored in stable conditions in deep water over long periods of time.

In order to find out how water masses in the deep South Pacific have developed over the last 30,000 years, the team from the University of Oldenburg's Institute for Chemistry and Biology of the Marine Environment (ICBM), the Max Planck Institute for Marine Microbiology in Bremen and the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) recovered sediment cores from water depths of between 3,000 and more than 4,000 metres during an expedition of the research vessel "Polarstern" to the South Pacific.

The geochemists Dr. Chandranath Basak and Dr. Henning Fröllje of the ICBM – the two main authors of the study – extracted tiny teeth and other skeletal debris of fossil fish from the sediment to analyse their content of isotopes of the rare earth metal neodymium.

Nedymium Signature in Fish Debris

"Neodymium is particularly useful for identifying water masses of different origin," said Pahnke, the head of the Max Planck Research Group for Marine Isotope Geochemistry based at the ICBM and the Max Planck Institute for Marine Microbiology in Bremen, explaining that each layer of water has its own characteristic neodymium signature. The isotope ratios of this element vary depending on which ocean basin the water comes from.

For instance, the coldest and therefore deepest water mass in the Southern Pacific forms on the continental shelf of Antarctica and carries a distinct neodymium signature. Overlying this mass is a layer that combines water from the North Atlantic, the South Pacific and the North Pacific and hence is marked by a different signature.

Using fish debris in deep-sea sediments, the researchers were able to trace the variations in neodymium concentrations at different depths over the course of time. The result: at the peak of the last ice age approximately 20,000 years ago, the neodymium signature of samples taken from depths below 4,000 metres was significantly lower than at lower depths. "The only explanation for such a pronounced difference is that there was no mixing of the water masses at that time," said Fröllje, who currently works at the University of Bremen. He and his colleagues concluded from this that the deep waters were strongly stratified during the glacial period.

Global Warming broke up Stratification

As the climate in the southern hemisphere grew warmer towards the end of the last ice age around 18,000 years ago, the stratification of the water masses was broken up and neodymium values at different depths converged. "There was probably more mixing because the density of the water decreased as a result of the warming," Pahnke explained. This then led to the release of the carbon dioxide stored in deep waters.

For some time now climate researchers have been speculating on why fluctuations in atmospheric CO2 levels followed the same pattern as temperature in the southern hemisphere whereas the temperature in the north at times ran counter to these fluctuations. One theory is that certain processes in the Southern Ocean played an important role. "With our analyses we have for the first time provided concrete evidence supporting the theory that there is a connection between the CO2 fluctuations and stratification in the Southern Ocean," said co-author of the study Dr. Frank Lamy of the AWI in Bremerhaven. The current study supports the hypothesis that the warming of the southern hemisphere broke up stable stratification in the Antarctic Ocean, resulting in the release of the carbon dioxide that was stored in these waters.

Contact: Katharina Pahnke, Phone: *49-441-798-3328, Email: k.pahnke@icbm.de or kpahnke@mpi-bremen.de

Weitere Informationen:

http://www.sciencemag.org/
https://uol.de/presse/mit/
https://www.icbm.de/mig/

Dr. Corinna Dahm-Brey | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>