Southern Ocean iron cycle gives new insight into climate change

They found that deep winter mixing, a seasonal process which carries colder and deeper, nutrient-rich water to the surface, plays the most important role in transporting iron to the surface. The iron is then able to stimulate phytoplankton growth which supports the ocean's carbon cycle and the aquatic food chain

They were also able to determine that following the winter iron surge, a recycling process is necessary to support biological activity during the spring and summer seasons.

Oceanographer, Dr Alessandro Tagliabue, from the University's School of Environmental Sciences, said: “We combined all available iron data, matched them with physical data from autonomous profiling floats and used the latest satellite estimates of biological iron demand to explore how iron is supplied to the phytoplankton in the Southern Ocean.

“This is important because iron limits biological productivity and air to sea CO2 exchange in this region. We found unique aspects to the iron cycle and how it is supplied by physical processes, making it distinct to other nutrients.

“This means that the Southern Ocean's nutrient supply would be affected by changes to the climate system (such as winds and freshwater input) differently to other areas of the ocean.

“We need to understand these unique aspects so that they can be used to better inform global climate predictions.”

Dr Jean-Baptiste Sallée, from the Centre National de la Recherche Scientifique and the British Antarctic Survey, said: “We are really excited to make this discovery because until now we didn’t know the physical processes allowing iron to reach the ocean surface and maintain biological activity. The combination of strong winds and intense heat loss in winter strongly mixes the ocean surface and the mixing reaches deep iron reservoir.”

The Southern Ocean comprises the southernmost waters of the world oceans that encircle Antarctica. Researchers have long known the region is crucial in the uptake of atmospheric CO2 and that biological processes in the Southern Ocean influence the global ocean system via northward flowing currents.

###

The research involved the British Antarctic Survey, Southern Ocean Carbon and Climate Observatory, Sorbonne Universites, CNRS, University of Tasmania, University of Cape Town, University of Otago, University of Tasmania.

It is published in Nature Geoscience.

Media Contact

Sarah Stamper EurekAlert!

More Information:

http://www.liv.ac.uk

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors