Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Southern glaciers grow out of step with North

04.05.2009
New dating technique points to differences over 7,000 years

The vast majority of the world’s glaciers are retreating as the planet gets warmer. But a few, including ones south of the equator, in South America and New Zealand, are inching forward.

A new study in the journal Science puts this enigma in perspective; for the last 7,000 years New Zealand’s largest glaciers have often moved out of step with glaciers in the northern hemisphere, pointing to strong regional variations in climate.

Conventional wisdom holds that climate during the era of human civilization has been relatively stable, but the new study is the latest to challenge this view, by showing that New Zealand's glaciers have gone through rapid periods of growth and decline during the current interglacial period known as the Holocene.

"New Zealand's mountain glaciers have fluctuated frequently over the last 7,000 years and glacial advances have become slightly smaller through time," said lead author Joerg Schaefer, a geochemist at Columbia University's Lamont-Doherty Earth Observatory. "This pattern differs in important ways from the northern hemisphere glaciers. The door is open now towards a global map of Holocene glacier fluctuations and how climate variations during this period impacted human civilizations."

Glaciers are extremely sensitive to changes in temperature and snowfall, which makes them well suited for studying past climate. This archive has been largely untapped, however, because of the difficulty in assigning precise ages to glacier fluctuations.

One way to measure glacial fluxes is by studying the moraines, or rock deposits that glaciers often leave behind at their maximum points of advance. However, until now the methods of dating such moraines, including radiocarbon dating of organic matter, could be off by hundreds of years. By refining the analysis of a method called cosmogenic dating, Schaefer and his colleagues were able for the first time to assign precise ages to young Holocene moraines. They did this by measuring minute levels of the chemical isotope beryllium 10 in the rocks, which is produced when cosmic rays strike rock surfaces, and builds up over time. The researchers were thus able to pinpoint exactly when glaciers in New Zealand's Southern Alps began to recede, exposing the rocks to the cosmic rays.

From the results, they constructed a glacial timeline for the past 7,000 years and compared it against historic records from the Swiss Alps and other places north of the equator.

They found that the glaciers around Mount Cook, New Zealand's highest peak, reached their largest extent in the past 7,000 years about 6,500 years ago, when the Swiss Alps and Scandinavia were relatively warm. That's about 6,000 years before northern glaciers hit their Holocene peak during the Little Ice Age, between 1300 and 1860 AD.

That finding was a surprise to some scientists who assumed that the northern cold phase happened globally. The record in New Zealand shows other disparities that point to regional climate variations in both hemispheres, including glacial peaks during classic northern warm intervals such as the Medieval Warm Period and the Roman Age Optimum.

The new chemical and analytical protocols developed in Schaefer's cosmogenic dating lab is expected to allow scientists to accurately date glacier fluctuations throughout the Holocene, rounding out the climate picture on the continents.

"With this measure we can go to almost any mountain range on earth and date the moraines in front of the glaciers and produce a similar chronology," said coauthor George Denton, a glaciologist who is a senior professor at the University of Maine and an adjunct scientist at Lamont-Doherty.

Overall, glaciers around the world have been declining since about 1860, with the exception of a brief advance in Switzerland in the 1980s, New Zealand in the late 1970s through today, and a few other places. Changes in wind and sea surface temperatures are thought to be causing these regional fluctuations. Currently in a wet phase, New Zealand is expected to swing back to a warmer, drier phase in the next few years, causing the glaciers to retreat once again.

"The application of this technique should allow for much more accurate reconstructions of glacial advances worldwide," says Paul Filmer, program director for the National Science Foundation (NSF)'s Division of Earth Sciences, which helped fund the study. "This would provide more constraints to allow us to make our climate models more accurate."

The study also received funding from the Comer Science and Education Foundation and the New Zealand Foundation for Research, Science and Technology.

The other researchers involved in the study were: Michael Kaplan and Roseanne Schwartz, also of Lamont-Doherty; Aaron Putnam, University of Maine; Robert Finkel, University of California, Berkeley; David Barrell, GNS Science, New Zealand; Bjorn Anderson, University of Oslo; Andrew Mackintosh, Victoria University of Wellington, New Zealand; Trevor Chinn, Alpine and Polar Processes Consultancy, New Zealand; Christian Schluchter, University of Bern, Switzerland.

Copies of the paper, "High-Frequency Holocene Glacier Fluctuations in New Zealand Differ from the Northern Signature," are available from the authors or from Science: 202-326-6440 or scipak@aaas.org.

Scientist contacts:

Joerg Schaefer, schaefer@ldeo.columbia.edu, Ph: 845-365-8756
George Denton, gdenton@maine.edu, Ph: 207-581-2193
Robert Finkel, rfinkel@berkeley.edu, Cell: 510-520-1738
More information: Kim Martineau, Science Writer, Lamont-Doherty Earth Observatory, kmartine@ei.columbia.edu, Ph: 845-365-8708, Cell: 518-221-6890

The Earth Institute at Columbia University mobilizes the sciences, education and public policy to achieve a sustainable earth. Through interdisciplinary research among more than 500 scientists in diverse fields, the Institute is adding to the knowledge necessary for addressing the challenges of the 21st century and beyond. With over two dozen associated degree curricula and a vibrant fellowship program, the Earth Institute is educating new leaders to become professionals and scholars in the growing field of sustainable development. We work alongside governments, businesses, nonprofit organizations and individuals to devise innovative strategies to protect the future of our planet.

Lamont-Doherty Earth Observatory, a member of The Earth Institute at Columbia University, is one of the world's leading research centers seeking fundamental knowledge about the origin, evolution and future of the natural world. More than 300 research scientists study the planet from its deepest interior to the outer reaches of its atmosphere, on every continent and in every ocean. From global climate change to earthquakes, volcanoes, nonrenewable resources, environmental hazards and beyond, Observatory scientists provide a rational basis for the difficult choices facing humankind in the planet's stewardship.

Kim Martineau | EurekAlert!
Further information:
http://www.ei.columbia.edu

More articles from Earth Sciences:

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

nachricht Drones survey African wildlife
11.07.2018 | Schweizerischer Nationalfonds SNF

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>