Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solomon Islands earthquake sheds light on enhanced tsunami risk

14.04.2009
The 2007 Solomon Island earthquake may point to previously unknown increased earthquake and tsunami risks because of the unusual tectonic plate geography and the sudden change in direction of the earthquake, according to geoscientists.

On April 1, 2007, a tsunami-generating earthquake of magnitude 8.1 occurred East of Papua New Guinea off the coast of the Solomon Islands. The subsequent tsunami killed about 52 people, destroyed much property and was larger than expected.

"This area has some of the fastest moving plates on Earth," said Kevin P. Furlong, professor of geoscience, Penn State. "It also has some of the youngest oceanic crust subducting anywhere."

Subduction occurs when one tectonic plate moves beneath another plate. In this area, there are actually three plates involved, two of them subducting beneath the third while sliding past each other. The Australia Plate and the Solomon Sea/Woodlark Basin Plate are both moving beneath the Pacific Plate. At the same time, the Australia and Solomon Sea/Woodlark Basin Plates are sliding past each other. The Australia Plate moves beneath the Pacific Plate at about 4 inches a year and the Solomon Sea Plate moves beneath the Pacific Plate at about 5.5 inches per year. As if this were not complicated enough, the Australia and Solomon Sea plates are also moving in slightly different directions.

The researchers who include Furlong; Thorne Lay, professor of Earth and planetary sciences, University of California, Santa Cruz, and Charles J. Ammon, professor of geoscience, Penn State, were intrigued by the occurrence of a great earthquake where the three plates meet and investigated further. They report their findings in today's (Apr. 10) issue of Science.

The researchers found that the earthquake crossed from one plate boundary -- the Australia-Pacific boundary -- into another -- the Solomon/Woodlark-Pacific boundary. The event began in the Australia Plate and moved across into the Solomon Sea Plate and had two centers of energy separated by lower energy areas.

"Normally we think earthquakes should stop at the plate boundaries," said Furlong

More importantly, when the earthquake moved from one plate to the other, it quickly changed direction, mimicking the different plate motion directions of the plates involved.

"We are confident that the fault slip in the two main locations are different by 30 to 40 degrees," said Furlong. "I do not know of any other place where we have observed that behavior during an earthquake before, but it most certainly has happened here before."

The two motion directions during the earthquake caused the Pacific plate to bunch up and uplift. This localized atypical uplift during this earthquake reached a maximum of a couple of yards. This uplift is proposed to be the cause of a local increase in tsunami heights. It may also be what has produced these near-trench islands.

"This event, repeated enough times may be why islands in this area are plentiful," said Furlong. "They are coral islands, not volcanic ones, and so are created by uplift."

Another unusual component of this earthquake is the abruptness at which the earthquake's direction changed. Seismic data indicate that the change occurred in 12.5 miles or less.

Furlong notes, however that the change could have happened in even less distance, but the seismic data are only sensitive enough to recognize changes on that scale.

According to Furlong, seismologists do not expect young sections of the Earths crust to be locations of major earthquakes, so the Solomon Island earthquake was unusual from the beginning. He also believes that similar areas exist or existed.

"Other places along subduction zones had this type of geography in the past and might show up geologically," said Furlong. "At present there are locations along the margins of Central America and southern South America that could potentially host similar earthquakes."

A better understanding of earthquakes zones like the Solomon Islands may help residents along other complex plate boundaries to better prepare for localized regions of unusually large uplift and tsunami hazards.

The National Science Foundation supported this work.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>