Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soil contributes to climate warming more than expected

09.02.2010
Finnish research shows a flaw in climate models

The climatic warming will increase the carbon dioxide emissions from soil more than previously estimated. This is a mechanism that will significantly accelerate the climate change. Already now the carbon dioxide emissions from soil are ten times higher than the emissions of fossil carbon. A Finnish research group has proved that the present standard measurements underestimate the effect of climate warming on emissions from the soil.

The error is serious enough to require revisions in climate change estimates. In all climate models, the estimates of emissions from soil are based on measurements made using this erroneous method. Climate models must be revised so that the largest carbon storage of the land ecosystems will be estimated correctly. The sensitivity of the soil carbon storage to climatic warming will endanger the carbon sink capacity of forests in the future

Research on the effect of climate change on the carbon dioxide release from soil is seriously studied by many research groups around the world. It is known that emissions from soil have a significant influence on the carbon dioxide concentration in the atmosphere and thereby on the future climate. However, these studies are usually based on short-term measurements of the carbon dioxide production of soil. According to the results of the Finnish research group, such a method gives systematically biased estimates on the effects of climate change on the emissions.

The carbon dioxide measured in short-term experiments comes from carbon compounds that are decomposed quickly, but such compounds are not abundant in the soil. Based on radiocarbon measurements, the Finnish research group showed that the more slowly decomposing compounds are much more sensitive to the rise of temperature and that such compounds are abundant in the soil.

The studies in boreal forests showed that carbon dioxide emissions from the soil will be up to 50 percent higher than those suggested by the present mainstream method, if the mean temperature will rise as it is estimated, that is, by 5 centigrades before the end of this century, and if the carbon flow to the soil will not increase. An increase of the growth of forest biomass by 100-200 % would compensate the increasing releases from the soil. According to the previous erroneous estimates, a 70-80 % increase of growth would be enough. The difference is significant. Even according to the highest estimates, the growth of forests will only increase by 60 % if the mean temperatures will rise by 5 centigrades.

Carbon storage in soil will decrease, emissions from forests will increase

According to the results, the climatic warming will inevitably lead to smaller carbon storage in soil and to higher carbon dioxide emissions from forests. These emissions will further warm up the climate, and as a consequence the emissions will again increase, This interaction between the carbon dioxide emissions from soil and the warming of climate will accelerate the climate change.

The present climate models underestimate the increase of carbon dioxide emissions from soil in a warmer climate. Thereby they also underestimate the accelerating impact of the largest carbon storage in forests on the climate change. This result is also essential with respect to the climate policy measures concerning forests. The carbon storage of forests is, more than previously assumed, sensitive to climatic warming, and the carbon sink capacity of forests is endangered. To maintain the carbon storage, the accumulation of organic material in forests should increase. However, this is not compatible with the present bioenergy goals for forests and with the more and more intensive harvesting of biomass in forests.

The research was carried out as cooperation between the Finnish Environment Institute, the Finnish Forest Research Institute and the Dating Laboratory of the Finnish Museum of Natural History at the University of Helsinki. The research was funded by the Academy of Finland and the Maj and Tor Nessling Foundation.

Erkki Kauhanen | alfa
Further information:
http://www.metla.fi/tiedotteet/2010/2010-02-08-soil-climate.htm

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Pollen taxi for bacteria

18.07.2018 | Life Sciences

Biological signalling processes in intelligent materials

18.07.2018 | Life Sciences

Study suggests buried Internet infrastructure at risk as sea levels rise

18.07.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>