Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snows Of Kilimanjaro shrinking rapidly, and likely to be lost

03.11.2009
The remaining ice fields atop famed Mount Kilimanjaro in Tanzania could be gone within two decades and perhaps even sooner, based on the latest survey of the ice fields remaining on the mountain .

The findings indicate a major cause of this ice loss is very likely to be the rise in global temperatures. Although changes in cloudiness and precipitation may also play a role, they appear less important, particularly in recent decades.

The first calculation of ice volume loss indicates that from 2000 to 2007, the loss by thinning is now roughly equal to that by shrinking.

These predictions, published in the journal Proceedings of the National Academy of Sciences, are among the latest dramatic physical evidence of global climate change.

Paleoclimatologist Lonnie Thompson, professor of earth sciences at Ohio State University, and his colleagues amassed a trail of data showing the rapid loss of ice atop Africa's highest mountain:

85 percent of the ice that covered the mountain in 1912 had been lost by 2007, and 26 percent of the ice there in 2000 is now gone;

A radioactive signal marking the 1951-52 "Ivy" atomic tests that was detected in 2000 1.6 meters (5.25 feet) below the surface of the Kilimanjaro ice is now lost, with an estimated 2.5 meters (8.2 feet) missing from the top of the current ice fields;

The presence of elongated bubbles trapped in the frozen ice at the top of one of the cores shows that surface ice has melted and refrozen. There is no evidence of sustained melting anywhere in the rest of the core that dates back 11,700 years;

Even 4,200 years ago, a drought in that part of Africa that lasted about 300 years and left a thick (about 1-inch) dust layer, was not accompanied by any evidence of melting. These observations confirm that the current climate conditions over Mount Kilimanjaro are unique over the last 11 millennia.

"This is the first time researchers have calculated the volume of ice lost from the mountain's ice fields," said Thompson, a research scientist with Ohio State's Byrd Polar Research Center. "If you look at the percentage of volume lost since 2000 versus the percentage of area lost as the ice fields shrink, the numbers are very close."

While the loss of mountain glaciers is most apparent from the retreat of their margins, Thompson said an equally troubling effect is the thinning of the ice fields from the surface.

The summits of both the Northern and Southern Ice Fields atop Kilimanjaro have thinned by 1.9 meters (6.2 feet) and 5.1 meters (16.7 feet) respectively. The smaller Furtwangler Glacier, which was melting and water-saturated in 2000 when it was drilled, has thinned as much as 50 percent between 2000 and 2009.

"It has lost half of its thickness," Thompson explained. "In the future, there will be a year when Furtwängler is present and by the next year, it will have disappeared . The whole thing will be gone!"

Thompson's team drilled six cores through Kilimanjaro's ice fields in 2000 and published their findings in the journal Science two years later. That work established a detailed baseline against which more recent data can be compared.

Thompson said the changes occurring on Mount Kilimanjaro mirror those on Mount Kenya and the Rwenzori Mountains in Africa, as well as tropical glaciers high in the South American Andes and in the Himalayas.

"The fact that so many glaciers throughout the tropics and subtropics are showing similar responses suggests an underlying common cause. The increase of Earth's near surface temperatures, coupled with even greater increases in the mid- to upper-tropical troposphere, as documented in recent decades, would at least partially explain the observed widespread similarity in glacier behavior," he said.

Along with Thompson, Ellen Mosley-Thompson, Henry Brecher and Bryan Mark, all with the Byrd Polar Research Center, and Douglas Hardy from the University of Massachusetts all contributed to the study.

The research was sponsored primarily by the Paleoclimate Program of the National Science Foundation with additional support from the Climate, Water and Carbon (CWC) Program at Ohio State University.

Lonnie Thompson | EurekAlert!
Further information:
http://www.osu.edu

More articles from Earth Sciences:

nachricht Searching for clues on extreme climate change
18.09.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht Multiyear Tracking of Atmospheric Radicals
12.09.2018 | Max-Planck-Institut für Chemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

Im Focus: Graphene enables clock rates in the terahertz range

Graphene is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range – which correspond to today’s clock rates – extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal “Nature”.

Graphene – an ultrathin material consisting of a single layer of interlinked carbon atoms – is considered a promising candidate for the nanoelectronics of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

World's first passive anti-frosting surface fights ice with ice

18.09.2018 | Materials Sciences

A novel approach of improving battery performance

18.09.2018 | Materials Sciences

Scientists use artificial neural networks to predict new stable materials

18.09.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>