Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small organisms could dramatically impact world’s climate

26.10.2012
Warmer oceans in the future could significantly alter populations of phytoplankton, tiny organisms that could have a major impact on climate change.
In the current issue of Science Express, Michigan State University researchers show that by the end of the 21st century, warmer oceans will cause populations of these marine microorganisms to thrive near the poles and may shrink in equatorial waters. Since phytoplankton play a key role in the food chain and the world’s cycles of carbon, nitrogen, phosphorous and other elements, a drastic drop could have measurable consequences.

“In the tropical oceans, we are predicting a 40 percent drop in potential diversity,” said Mridul Thomas, MSU graduate student and one of the co-authors. “If the oceans continue to warm as predicted, there will be a sharp decline in the diversity of phytoplankton in tropical waters and a poleward shift in species’ thermal niches, if they don’t adapt to climate change.”

Thomas co-authored the study with fellow MSU graduate student Colin Kremer, plant biology, and their faculty mentors Elena Litchman, MSU zoologist, and Christopher Klausmeier, MSU plant biologist. The team, which conducted its research at MSU’s Kellogg Biological Station, explained that since phytoplankton play a key role in regulating atmospheric carbon dioxide levels, and thus, global climate, this shift could cause significant change.

The microorganisms use light, carbon dioxide and nutrients to grow. Although phytoplankton are small, they flourish in every ocean, consuming as much carbon dioxide through photosynthesis as all the terrestrial plants combined.

Water temperatures strongly influence their growth rates. In fact, phytoplankton in warmer equatorial waters can grow much faster than their cold-water cousins. With worldwide temperatures predicted to increase over the next century, it’s important to gauge phytoplankton’s reaction and what will happen to the carbon that they currently carry to the ocean floor.

The researchers were able to show that phytoplankton have adapted to local current temperatures. Based on projections of ocean temperatures in the future, however, many phytoplankton may not adapt quickly enough to changes in their current environment. Since phytoplankton can’t regulate their temperatures or migrate, they may suffer significantly limited growth and diversity, Kremer said.

Being able to forecast the impact of these changes will be a useful tool for scientists around the world, said David Garrison, program director in the National Science Foundation Division of Ocean Sciences.

“This is an important contribution to predicting plankton productivity and community structure in the oceans of the future,” he said. “The work addresses how phytoplankton species are affected by a changing environment, and the really difficult question of whether evolutionary adaptation to those changes is possible.”

This research is funded in part by the National Science Foundation and MSU’s BEACON Center for the Study of Evolution in Action.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world’s most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

Layne Cameron | EurekAlert!
Further information:
http://www.msu.edu

More articles from Earth Sciences:

nachricht Scientists turn carbon emissions into usable energy
21.01.2019 | Ulsan National Institute of Science and Technology (UNIST)

nachricht Ten-year anniversary of the Neumayer Station III
18.01.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bifacial Stem Cells Produce Wood and Bast

Heidelberg researchers study one of the most important growth processes on Earth

So-called bifacial stem cells are responsible for one of the most critical growth processes on Earth – the formation of wood.

Im Focus: Energizing the immune system to eat cancer

Abramson Cancer Center study identifies method of priming macrophages to boost anti-tumor response

Immune cells called macrophages are supposed to serve and protect, but cancer has found ways to put them to sleep. Now researchers at the Abramson Cancer...

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

How our cellular antennas are formed

22.01.2019 | Life Sciences

Proposed engineering method could help make buildings and bridges safer

22.01.2019 | Architecture and Construction

Bifacial Stem Cells Produce Wood and Bast

22.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>